Patents by Inventor Kenta Kayano

Kenta Kayano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230052705
    Abstract: An air conditioner for a vehicle includes a refrigeration cycle, a heating unit and a control unit. The refrigeration cycle includes an air-conditioning evaporator, a chilling evaporator, an air-conditioning side flow path, a detour flow path and an air-conditioning flow rate adjustment unit. The control unit includes a determination unit that determines whether a condensation condition is satisfied when a refrigerant is flowing through the chilling evaporator via the detour flow path in a state where an inflow of a refrigerant into the air-conditioning evaporator is prohibited. When the determination unit determines that the condensation condition is satisfied, the control unit controls the air-conditioning flow rate adjustment unit to allow an inflow of a refrigerant into the air-conditioning evaporator as a condensation suppression operation for suppressing condensation of a refrigerant in the air-conditioning evaporator.
    Type: Application
    Filed: October 27, 2022
    Publication date: February 16, 2023
    Inventors: Kouji MIURA, Yoshiki KATOH, Masamichi MAKIHARA, Atsushi YAMADA, Kenta KAYANO, Hiroaki KAWANO, Tooru OKAMURA, Naoya MAKIMOTO
  • Publication number: 20230016470
    Abstract: A battery temperature control device includes a heating medium circuit that connects a battery heat exchanger, an outside air heat exchanger, a heating medium pump, and a flow rate regulating unit. The outside air heat exchanger is connected in parallel to the battery heat exchanger. The flow rate regulating unit adjusts a flow rate of the heating medium in a first path through which the heating medium flows via at least the outside air heat exchanger and a flow rate of the heating medium in a second path through which the heating medium flows by detouring around the outside air heat exchanger. The control unit controls the flow rate regulating unit to adjust a ratio between a flow rate of the heating medium in the first path and a flow rate of the heating medium in the second path.
    Type: Application
    Filed: September 27, 2022
    Publication date: January 19, 2023
    Inventors: Kouji MIURA, Yoshiki KATOH, Masamichi MAKIHARA, Atsushi YAMADA, Kenta KAYANO, Hiroaki KAWANO, Tooru OKAMURA, Naoya MAKIMOTO, Takahiro MAEDA
  • Publication number: 20220011006
    Abstract: An air conditioner includes a heat pump cycle, a heating unit, a low-temperature side heat medium circuit, and a heat dissipation amount adjustment control unit. The heat pump cycle has a compressor, a condenser, a decompression unit, and an evaporator. The heating unit has a heating heat exchanger, an outside air radiator, and a heat dissipation amount adjustment unit. The low-temperature side heat medium circuit has a heat generation device. The heat dissipation amount adjustment control unit controls the heat dissipation amount adjustment unit to adjust a heat dissipation amount in the outside air radiator such that a blown air temperature of the blown air heated by the heating heat exchanger approaches a predetermined target temperature.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Koji MIURA, Hiroaki KAWANO, Motohiro YAMAGUCHI, Kazuya TANIGUCHI, Yoshiki KATO, Masamichi MAKIHARA, Takahiro MAEDA, Kuniyoshi TANIOKA, Toru OKAMURA, Naoya MAKIMOTO, Atsushi YAMADA, Kenta KAYANO
  • Patent number: 10018386
    Abstract: A swirl space forming member that forms a swirl space in which a refrigerant flowing into a nozzle portion of an ejector swirls around an axis of the nozzle portion. In this way, even when the refrigerant flowing out of a first evaporator is a gas-phase refrigerant, pressure of the refrigerant on a swirling center axis side in the swirl space is reduced to be able to start condensation by swirling the refrigerant, and a gas-liquid two-phase refrigerant in which a condensation nucleus is generated can flow into the nozzle portion. Thus, occurrence of a condensation delay in the refrigerant in the nozzle portion can be restricted.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: July 10, 2018
    Assignee: DENSO CORPORATION
    Inventors: Haruyuki Nishijima, Kenta Kayano, Yoshiaki Takano
  • Patent number: 9989074
    Abstract: A mixing portion that is formed in an area from a refrigerant injection port of a nozzle portion to an inlet section of a diffuser portion in an internal space of a body portion of an ejector, that mixes an injection refrigerant injected from the refrigerant injection port and a suction refrigerant suctioned from a refrigerant suction port is provided. A distance from the refrigerant injection port to the inlet section in the mixing portion is determined such that a flow velocity of the refrigerant flowing into the inlet section of the diffuser portion becomes lower than or equal to a two-phase sound velocity. A shock wave that is generated at a time that a mixed refrigerant is shifted from a supersonic velocity state to a subsonic velocity state is generated in the mixing portion.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: June 5, 2018
    Assignee: DENSO CORPORATION
    Inventors: Haruyuki Nishijima, Kenta Kayano, Yoshiaki Takano
  • Patent number: 9771954
    Abstract: A mixing portion that mixes an injection refrigerant and a suction refrigerant is formed in a range of an internal space of a heating-side body portion of a heating-side ejector from a refrigerant injection port of a heating-side nozzle portion to an inlet of a heating-side diffuser. Further, the mixing portion is formed in a shape that gradually decreases a refrigerant passage area toward a downstream side of a refrigerant flow, and a refrigerant passage area of the inlet of the heating-side diffuser is set smaller than that of the refrigerant injection port. Thus, the flow velocity of the mixed refrigerant is decelerated to a value lower than a two phase sound velocity within the mixing portion, thereby suppressing occurrence of shock wave in the heating-side diffuser and stabilizing the pressure increasing performance in the heating-side diffuser.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 26, 2017
    Assignee: DENSO CORPORATION
    Inventors: Ryoko Awa, Haruyuki Nishijima, Yoshiaki Takano, Etsuhisa Yamada, Satoshi Itoh, Kenta Kayano
  • Patent number: 9581376
    Abstract: An interior of a nozzle in an ejector is formed with a swirling space in which a refrigerant swirls, and a refrigerant passage in which the refrigerant that has flowed from the swirling space is depressurized. The refrigerant passage includes a minimum passage area part most reduced in the refrigerant passage area, and a divergent part that gradually enlarges in the refrigerant passage area from the minimum passage area part toward a refrigerant ejection port. Plate members, which reduce a velocity component of the refrigerant flowing into the minimum passage area part in a swirling direction, are disposed within the refrigerant passage.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: February 28, 2017
    Assignee: DENSO CORPORATION
    Inventors: Kenta Kayano, Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
  • Patent number: 9523521
    Abstract: In a dehumidification-air heating mode, a refrigerant circuit is configured such that a refrigerant outlet side of an exterior heat exchanger communicates with a heating side refrigerant suction port of a heating side ejector as a refrigerant decompression means, and that a refrigerant inlet side of an interior evaporator communicates with an outlet side of a heating side diffuser of the heating side ejector. A refrigerant evaporation temperature in the exterior heat exchanger is set lower than that of the interior evaporator by a pressurizing effect of the heating side ejector. Thus, the amount of heat absorption by the refrigerant at the exterior heat exchanger is increased to improve the heating capacity of the air in an interior condenser.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: December 20, 2016
    Assignee: DENSO CORPORATION
    Inventors: Ryoko Awa, Haruyuki Nishijima, Yoshiaki Takano, Etsuhisa Yamada, Satoshi Itoh, Kenta Kayano
  • Patent number: 9512858
    Abstract: An ejector includes (i) a body part including a depressurizing space in which a refrigerant flowing out of a swirling space is depressurized, a suction passage that draws a refrigerant from an external, and a pressurizing space in which a jet refrigerant jetted from the depressurizing space and a suction refrigerant drawn from the suction passage are mixed with each other to be pressurized, (ii) a conical passage formation member which is arranged inside the body part, and (iii) a swirling promotion part. A nozzle passage is provided in the depressurizing space on an outer peripheral surface of the passage formation member, and a diffuser passage is provided in the pressurizing space on the outer peripheral surface of the passage formation member. The swirling promotion part includes a flow regulation plate that promotes a swirling flow of the refrigerant flowing in the diffuser passage.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 6, 2016
    Assignee: DENSO CORPORATION
    Inventors: Daisuke Nakajima, Haruyuki Nishijima, Etsuhisa Yamada, Hideya Matsui, Kenta Kayano, Yoshiyuki Yokoyama, Tatsuhiro Suzuki
  • Patent number: 9505289
    Abstract: A torque estimating device of a compressor for an ejector-type refrigerant cycle device includes a high pressure detector disposed to detect a physical amount having a relation with a high-pressure side refrigerant pressure of a refrigerant cycle, an evaporation pressure detector disposed to detect a physical amount having a relation with a refrigerant evaporation pressure in a suction side evaporator, a pressurizing estimating portion for estimating a pressurizing amount in a pressure increasing portion of an ejector to be increased in accordance with an increase of a pressure difference between the high-pressure side refrigerant pressure and the refrigerant evaporation pressure, and a suction pressure estimating portion for estimating a suction refrigerant pressure of the compressor by using the pressurizing amount estimated by the pressurizing estimating portion. Thus, a drive torque of the compressor can be accurately estimated in the ejector-type refrigerant cycle device.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: November 29, 2016
    Assignee: DENSO CORPORATION
    Inventors: Kenta Kayano, Takeshi Wakisaka, Takekazu Kanou, Yoshikatsu Sawada
  • Patent number: 9494347
    Abstract: In a heating mode, a refrigerant circuit is switched in which a refrigerant is decompressed by an ejector to flow into a gas-liquid separator, and a separated gas phase refrigerant is introduced into an intermediate-pressure suction port of a compressor and at the same time a separated liquid phase refrigerant flows to at least a second variable throttle valve, an interior evaporator, and a suction port of the compressor, in this order. In a cooling mode, a refrigerant circuit is switched in which the refrigerant flowing out of the interior condenser is decompressed by a first variable throttle valve through an exterior heat exchanger to flow into the gas-liquid separator, and a separated gas phase refrigerant is introduced into the intermediate-pressure suction port of the compressor, and at the same time a separated liquid phase refrigerant flows to the second variable throttle valve, the interior evaporator, and the suction port of the compressor, in this order.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: November 15, 2016
    Assignee: DENSO CORPORATION
    Inventors: Kenta Kayano, Haruyuki Nishijima, Etsuhisa Yamada, Yoshiaki Takano
  • Publication number: 20160186783
    Abstract: A mixing portion that is formed in an area from a refrigerant injection port of a nozzle portion to an inlet section of a diffuser portion in an internal space of a body portion of an ejector and that mixes an injection refrigerant injected from the refrigerant injection port and a suction refrigerant suctioned from a refrigerant suction port is provided. A distance from the refrigerant injection port to the inlet section in the mixing portion is determined such that a flow velocity of the refrigerant flowing into the inlet section of the diffuser portion becomes lower than or equal to a two-phase sound velocity. A shock wave that is generated at a time that a mixed refrigerant is shifted from a supersonic velocity state to a subsonic velocity state is generated in the mixing portion, so as to stabilize pressure increasing performance in the diffuser portion.
    Type: Application
    Filed: May 27, 2014
    Publication date: June 30, 2016
    Inventors: Haruyuki NISHIJIMA, Kenta KAYANO, Yoshiaki TAKANO
  • Publication number: 20160116195
    Abstract: A swirl space forming member that forms a swirl space in which a refrigerant flowing into a nozzle portion of an ejector swirls around an axis of the nozzle portion. In this way, even when the refrigerant flowing out of a first evaporator is a gas-phase refrigerant, pressure of the refrigerant on a swirling center axis side in the swirl space is reduced to be able to start condensation by swirling the refrigerant, and a gas-liquid two-phase refrigerant in which a condensation nucleus is generated can flow into the nozzle portion. Thus, occurrence of a condensation delay in the refrigerant in the nozzle portion can be restricted.
    Type: Application
    Filed: May 27, 2014
    Publication date: April 28, 2016
    Inventors: Haruyuki NISHIJIMA, Kenta KAYANO, Yoshiaki TAKANO
  • Publication number: 20160047586
    Abstract: An interior of a nozzle in an ejector is formed with a swirling space in which a refrigerant swirls, and a refrigerant passage in which the refrigerant that has flowed from the swirling space is depressurized. The refrigerant passage includes a minimum passage area part most reduced in the refrigerant passage area, and a divergent part that gradually enlarges in the refrigerant passage area from the minimum passage area part toward a refrigerant ejection port. Plate members, which reduce a velocity component of the refrigerant flowing into the minimum passage area part in a swirling direction, are disposed within the refrigerant passage.
    Type: Application
    Filed: March 19, 2014
    Publication date: February 18, 2016
    Inventors: Kenta KAYANO, Etsuhisa YAMADA, Haruyuki NISHIJIMA, Yoshiaki TAKANO
  • Publication number: 20150316075
    Abstract: An ejector includes (i) a body part including a depressurizing space in which a refrigerant flowing out of a swirling space is depressurized, a suction passage that draws a refrigerant from an external, and a pressurizing space in which a jet refrigerant jetted from the depressurizing space and a suction refrigerant drawn from the suction passage are mixed with each other to be pressurized, (ii) a conical passage formation member which is arranged inside the body part, and (iii) a swirling promotion part. A nozzle passage is provided in the depressurizing space on an outer peripheral surface of the passage formation member, and a diffuser passage is provided in the pressurizing space on the outer peripheral surface of the passage formation member. The swirling promotion part includes a flow regulation plate that promotes a swirling flow of the refrigerant flowing in the diffuser passage.
    Type: Application
    Filed: November 13, 2013
    Publication date: November 5, 2015
    Inventors: Daisuke NAKAJIMA, Haruyuki NISHIJIMA, Etsuhisa YAMADA, Hideya MATSUI, Kenta KAYANO, Yoshiyuki YOKOYAMA, Tatsuhiro SUZUKI
  • Publication number: 20150308462
    Abstract: A mixing portion that mixes an injection refrigerant and a suction refrigerant is formed in a range of an internal space of a heating-side body portion of a heating-side ejector from a refrigerant injection port of a heating-side nozzle portion to an inlet of a heating-side diffuser. Further, the mixing portion is formed in a shape that gradually decreases a refrigerant passage area toward a downstream side of a refrigerant flow, and a refrigerant passage area of the inlet of the heating-side diffuser is set smaller than that of the refrigerant injection port. Thus, the flow velocity of the mixed refrigerant is decelerated to a value lower than a two phase sound velocity within the mixing portion, thereby suppressing occurrence of shock wave in the heating-side diffuser and stabilizing the pressure increasing performance in the heating-side diffuser.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 29, 2015
    Applicant: DENSO CORPORATION
    Inventors: Ryoko AWA, Haruyuki NISHIJIMA, Yoshiaki TAKANO, Etsuhisa YAMADA, Satoshi ITOH, Kenta KAYANO
  • Publication number: 20150300706
    Abstract: In a dehumidification-air heating mode, a refrigerant circuit is configured such that a refrigerant outlet side of an exterior heat exchanger communicates with a heating side refrigerant suction port of a heating side ejector as a refrigerant decompression means, and that a refrigerant inlet side of an interior evaporator communicates with an outlet side of a heating side diffuser of the heating side ejector. A refrigerant evaporation temperature in the exterior heat exchanger is set lower than that of the interior evaporator by a pressurizing effect of the heating side ejector. Thus, the amount of heat absorption by the refrigerant at the exterior heat exchanger is increased to improve the heating capacity of the air in an interior condenser.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 22, 2015
    Inventors: Ryoko Awa, Haruyuki Nishijima, Yoshiaki Takano, Etsuhisa Yamada, Satoshi Itoh, Kenta Kayano
  • Publication number: 20150176868
    Abstract: In a heating mode, a refrigerant circuit is switched in which a refrigerant is decompressed by an ejector to flow into a gas-liquid separator, and a separated gas phase refrigerant is introduced into an intermediate-pressure suction port of a compressor and at the same time a separated liquid phase refrigerant flows to at least a second variable throttle valve, an interior evaporator, and a suction port of the compressor, in this order. In a cooling mode, a refrigerant circuit is switched in which the refrigerant flowing out of the interior condenser is decompressed by a first variable throttle valve through an exterior heat exchanger to flow into the gas-liquid separator, and a separated gas phase refrigerant is introduced into the intermediate-pressure suction port of the compressor, and at the same time a separated liquid phase refrigerant flows to the second variable throttle valve, the interior evaporator, and the suction port of the compressor, in this order.
    Type: Application
    Filed: June 20, 2013
    Publication date: June 25, 2015
    Applicant: DENSO CORPORATION
    Inventors: Kenta Kayano, Haruyuki Nishijima, Etsuhisa Yamada, Yoshiaki Takano
  • Patent number: 8424338
    Abstract: A vapor compression refrigerating cycle apparatus includes a compressor, a radiator, first and second throttle devices, a flow distributor, an ejector, a suction passage, and first and second evaporators. The flow distributor separates refrigerant decompressed through the first throttle device into a first passage and a second passage. The first passage is in communication with a nozzle portion of the ejector. The second passage is in communication with a suction portion of the ejector through the suction passage. The second throttle device and the second evaporator are disposed on the suction passage. The flow distributor is configured to be capable of adjusting a ratio of a flow rate of refrigerant passing through the second passage to a flow rate of refrigerant passing through the first passage in accordance with a heat load of at least one of the radiator, the first evaporator and the second evaporator.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 23, 2013
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Gouta Ogata, Mika Gocho, Kenta Kayano
  • Patent number: 8191383
    Abstract: An ejector device includes a nozzle having an inner wall surface defining a circular cross-sectional fluid passage extending from an inlet to a jet port. Furthermore, the fluid passage has a throat portion at a position between the inlet and the jet port, and a passage expanding portion in which the cross-sectional area of the fluid passage is enlarged from the throat portion as toward downstream. The passage expanding portion includes a middle portion in which the inner wall surface is expanded in a fluid flow direction by a first expanding angle, and an outlet portion from a downstream end of the middle portion to the jet port, in which the inner wall surface is expanded in the fluid flow direction by a second expanding angle that is larger than the first expanding angle. The ejector device can be suitably used for a refrigeration cycle apparatus.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: June 5, 2012
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho, Hideya Matsui, Kenta Kayano, Teruyuki Hano