Patents by Inventor Kenta Kumazaki

Kenta Kumazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150197244
    Abstract: A power transmission device for a hybrid vehicle includes a transmission device that includes a carrier to which an engine rotation shaft is connected; a differential device that includes a plurality of rotation components individually connected to a ring gear of the transmission device, an MG1 rotation shaft, an MG2 rotation shaft, and a drive wheel; a gear shift adjustment device that includes an engagement portion capable of controlling the transmission device to a neutral state where transmission of power between the carrier and the ring gear is not allowed or to a state where the transmission of power is allowed; and an HVECU that includes a first step of decreasing a rotating speed of a first rotating electric machine at the time an engine is started up during an EV travel mode.
    Type: Application
    Filed: June 19, 2012
    Publication date: July 16, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shunya Kato, Atsushi Tabata, Tatsuya Imamura, Tooru Matsubara, Takeshi Kitahata, Kenta Kumazaki, Yasuhiro Hiasa, Hiroyuki Shioiri, Hiroyuki Shibata
  • Patent number: 9079484
    Abstract: It is provided a control device for a vehicle power transmission device including a shifting portion and an electric motor that provides regeneration via the shifting portion, the control device executing a downshift of the shifting portion if a traveling loss in the vehicle power transmission device after the shift is smaller than a traveling loss in the vehicle power transmission device at a current gear ratio during regenerative traveling, and the traveling loss in the vehicle power transmission device including at least one of a loss in the shifting portion and a loss in the electric motor, the loss in the shifting portion being calculated based on the operating oil temperature of the shifting portion and the loss in the electric motor being calculated based on the temperature of the electric motor.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 14, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata
  • Publication number: 20150183422
    Abstract: A driving device for a hybrid vehicle includes a transmission unit configured to output a rotation of an engine while changing rotating speed of the engine; and a first rotating electric machine. The first rotating electric machine is configured to supply a torque for increasing the rotating speed of the engine at the time of starting up of the engine to the engine through the transmission unit. At the time of starting up of the engine, the gear shift stage of the transmission unit is switched to an overdrive state. Thus, a torque sufficient for starting up of the engine can be supplied to the engine, and hence the engine can be appropriately started up.
    Type: Application
    Filed: June 27, 2012
    Publication date: July 2, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Imamura, Atsushi Tabata, Tooru Matsubara, Kenta Kumazaki, Yasuhiro Hiasa, Tsuyoshi Kitahata
  • Publication number: 20150166042
    Abstract: A hybrid vehicle driving device includes: an engine; a rotation machine; and a transmission unit configured to connect and disconnect the engine and the rotation machine, wherein when the engine is stopped while a vehicle travels by using the engine as a power source, the engine is stopped by the rotation machine in a state in which the gear stage of the transmission unit is fixed, and then the transmission unit is set to a neutral state after the engine is stopped. It is desirable that the hybrid vehicle driving device stop the engine by the rotation machine in a state in which the corresponding relation between a rotation angle of the engine and a rotation angle of the rotation machine is already learned.
    Type: Application
    Filed: June 15, 2012
    Publication date: June 18, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeshi Kitahata, Tooru Matsubara, Atsushi Tabata, Tatsuya Imamura, Kenta Kumazaki, Yasuhiro Hiasa, Hiroyuki Shioiri, Hiroyuki Shibata
  • Publication number: 20150165891
    Abstract: Provided is a hybrid vehicle driving device including: a first differential mechanism configured to be connected to an engine and transmit a rotation of the engine; a second differential mechanism configured to connect the first differential mechanism and a driving wheel; and a switching device configured to shift the first differential mechanism, wherein the second differential mechanism includes a first rotation component connected to an output component of the first differential mechanism, a second rotation component connected to the first rotation machine, and a third rotation component connected to the second rotation machine and the driving wheel, and a reaction torque of the first rotation machine is corrected at a torque phase (S2-Y) after a start of the gear shift operation of the first differential mechanism by the switching device while the vehicle travels by using the engine as a power source (S3).
    Type: Application
    Filed: June 14, 2012
    Publication date: June 18, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata, Tatsuya Imamura, Tsuyoshi Kitahata, Yasuhiro Hiasa
  • Publication number: 20150151627
    Abstract: A power transmission device for a hybrid vehicle includes: a transmission device that includes a carrier to which an engine rotation shaft is connected; a differential device that includes a plurality of rotation components individually connected to a drive wheel, an MG2 rotation shaft, an MG1 rotation shaft, and a ring gear of the transmission device; a gear shift adjustment device that is able to control the transmission device to a neutral state where the transmission of power between the carrier and the ring gear is not allowed or to a state where the transmission of power is allowed; and an HVECU that includes a first step of controlling the transmission device to the neutral state in a state where the transmission of power between the carrier and the ring gear is allowed.
    Type: Application
    Filed: June 19, 2012
    Publication date: June 4, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shunya Kato, Atsushi Tabata, Tatsuya Imamura, Tooru Matsubara, Takeshi Kitahata, Kenta Kumazaki, Yasuhiro Hiasa, Hiroyuki Shioiri, Hiroyuki Shibata
  • Publication number: 20150142232
    Abstract: A control device of a hybrid vehicle includes an electric motor outputting a running torque at the time of motor running and a starting torque at engine start, in a state of the motor running using even the starting torque, the control device being configured to give a notification of the state to a driver when a charging capacity is smaller than a first predetermined value, and to start an engine when the charging capacity is smaller than a second predetermined value which is smaller than the first predetermined value.
    Type: Application
    Filed: February 28, 2012
    Publication date: May 21, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Tooru Matsubara, Koichi Okuda, Kenta Kumazaki, Tatsuya Imamura, Keita Imai, Takeshi Kitahata, Shunya Kato, Yasuhiro Hiasa
  • Publication number: 20150046011
    Abstract: A control device of a vehicle is configured to select motor running by one motor, motor running by two motors, and engine running. A charging capacity of an electric storage device allowing selection of the motor running by two motors is higher than a charging capacity allowing selection of the motor running by one motor. In the motor running by two motors and the engine running, a drive force larger than in the motor running by one motor is generated. When the motor running by one motor is performed with a charging capacity equal to or greater than a first threshold value, and a driver's drive request amount is increased, if the charging capacity is equal to or greater than a second threshold value higher than the first threshold value, the motor running by two motors is selected, while if the charging capacity is less than the second threshold value, the engine running is selected.
    Type: Application
    Filed: March 26, 2012
    Publication date: February 12, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keita Imai, Tatsuya Imamura, Kouichi Okuda, Tooru Matsubara, Takeshi Kitahata, Kenta Kumazaki, Yasuhiro Hiasa, Shunya Kato, Atsushi Tabata
  • Patent number: 8939868
    Abstract: A control device of a vehicle drive device includes: a hydraulic power transmission device having a lockup clutch mechanically coupling an input-side rotating member to which power from an engine is input and an output-side rotating member outputting power to drive wheels; and an electric motor coupled to a power transmission path between the hydraulic power transmission device and the drive wheels. If regeneration braking of a vehicle is performed with the electric motor, an engagement force of the lockup clutch is made larger when a vehicle speed related value varying depending on a vehicle speed is higher.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: January 27, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata, Tatsuya Imamura
  • Publication number: 20140358349
    Abstract: A control device of a vehicle includes a first electric motor; a differential mechanism having a rotating element coupled to the first electric motor, a rotating element that is an output rotating member coupled to drive wheels in a power transmittable manner, and a rotating element coupled to a non-rotating member by actuation of a lock mechanism; and a second electric motor coupled to the drive wheels in a power transmittable manner. During motor running for running with output torques from the first electric motor and the second electric motor used together in an actuated state of the lock mechanism, a drive torque shared by the first electric motor is made smaller in a requested drive torque when a rotation speed of a pinion making up the differential mechanism is higher.
    Type: Application
    Filed: December 21, 2011
    Publication date: December 4, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koichi Okuda, Atsushi Tabata, Keita Imai, Tooru Matsubara, Tatsuya Imamura, Takeshi Kitahata, Kenta Kumazaki, Shunya Kato, Yasuhiro Hiasa, Yuji Iwase, Hiroyuki Shibata
  • Patent number: 8892319
    Abstract: A power transmission apparatus is provided with a control device for starting each of first shift control, which is control associated with shifting of a stepless transmission unit, and second shift control, which is control associated with shifting of a stepped transmission unit, such that shift end timing of the stepless transmission unit is synchronized with shift end timing of the stepped transmission unit, in a condition that shift requests for the stepless transmission unit and the stepped transmission unit are detected in the same timing. According to the power transmitting apparatus, each of the first shift control and the second shift control is started such that the shift end timing of the stepless transmission unit is synchronized with the shift end timing of the stepped transmission unit.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shunya Kato, Tooru Matsubara, Kenta Kumazaki, Atsushi Tabata
  • Patent number: 8882632
    Abstract: It is provided a control device of a vehicle power transmission device having an automatic transmission shifted by engagement and release of hydraulic friction engagement devices to selectively establish a plurality of gear stages and an electric motor coupled to an input shaft of the automatic transmission in a power transmittable manner, the control device executing a clutch-to-clutch shift while performing regeneration through the electric motor at the time of a coast down shift of the automatic transmission, the control device completing regenerative torque reduction control to reduce a regenerative torque of the electric motor in a torque phase of the coast down shift before start of the torque phase in accordance with a drop-off of an output torque of the vehicle power transmission device.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: November 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Atsushi Tabata, Tooru Matsubara
  • Patent number: 8874290
    Abstract: It is provided a control device for a vehicle power transmission device having a stepped automatic transmission making up a portion of a power transmission path between an engine and a drive wheel, the control device setting a shift point of the automatic transmission in accordance with a request drive force of a driver and a vehicle speed, the control device setting a shift point of the automatic transmission in accordance with a rotation speed of the engine and a vehicle speed instead of the request drive force, if a vehicle is in a predetermined fuel consumption priority running state.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: October 28, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata
  • Publication number: 20140257618
    Abstract: A hybrid vehicle includes a clutch on a power transmission path between a motor generator and a driving wheel. If the vehicle moves backward when the vehicle starts forward acceleration from standstill on an ascending slope, the charging level of the battery that is attributable to power generation by the motor generator due to the backward travel is compared with a current maximum charging power of the battery. If the charging level of the battery is greater, the quantity of slippage of the clutch is controlled according to the excess to lower the rotational speed of the motor generator, hence to lower the power generation. That enables an increase in the torque of the motor generator within the range in which the battery may be charged. Performance is thus improved during acceleration from standstill.
    Type: Application
    Filed: October 21, 2011
    Publication date: September 11, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Hiasa, Atsushi Tabata, Tooru Matsubara, Tatsuya Imamura, Kenta Kumazaki
  • Publication number: 20140206500
    Abstract: A control device of a vehicle drive device includes: a hydraulic power transmission device having a lockup clutch mechanically coupling an input-side rotating member to which power from an engine is input and an output-side rotating member outputting power to drive wheels; and an electric motor coupled to a power transmission path between the hydraulic power transmission device and the drive wheels. If regeneration braking of a vehicle is performed with the electric motor, an engagement force of the lockup clutch is made larger when a vehicle speed related value varying depending on a vehicle speed is higher.
    Type: Application
    Filed: March 19, 2014
    Publication date: July 24, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenta KUMAZAKI, Tooru MATSUBARA, Atsushi TABATA, Tatsuya IMAMURA
  • Patent number: 8777811
    Abstract: A vehicular shift control device is provided that controls the input rotational speed of a geared transmission by adjusting the rotational speed of a drive source at downshift of the geared transmission. The greater the deceleration of the vehicle, the smaller is set the change gradient of the input rotational speed of the geared transmission. Therefore, even if the decrease rate of the post-shifting synchronization rotational speed is great, the incident angle ? of the input rotational speed of the geared transmission relative to the post-shifting synchronization rotational speed is maintained as a large angle. Even when the deceleration of the vehicle during downshift is great, the downshift is smoothly executed without producing an excessive synchronization shock.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: July 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshinari Suzuki, Kenta Kumazaki, Yoshiki Ando, Masakazu Kaifuku
  • Publication number: 20140180441
    Abstract: Provided is a control device of a vehicle, the vehicle having an electric motor and an engine. The control device includes an operating device and a controller. The operating device is configured to be selected a running capability of the vehicle. The controller configured to increase a running capability to be achieved using the electric motor alone, in a case where the vehicle travels using the electric motor alone according to the selected running capability, as compared with a case where the vehicle travels using the electric motor alone and the running capability is not selected.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro HIASA, Atsushi TABATA, Tooru MATSUBARA, Takeshi KITAHATA, Tatsuya IMAMURA, Kenta KUMAZAKI, Kouichi OKUDA, Masafumi YAMAMOTO, Keita IMAI, Keisuke OMURO
  • Patent number: 8556771
    Abstract: A control apparatus for a vehicular power transmitting system includes a shifting-point changing portion configured to change a shifting point at which a determination to perform a shifting action of a transmission portion is made, such that a shifting portion is changed according to a shifting response of the transmission portion. Alternatively, the control apparatus includes a shift-control start-point changing portion configured to change a shift-control start point at which the determination to perform the shifting action is made, such that the shift-control start point is changed according to the shifting response of the transmission portion, and a compulsory shift-control starting portion configured to make the determination when an operating point of a differential portion electric motor has reached the shift-control start point.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuya Imamura, Yuji Iwase, Atsushi Tabata, Kenta Kumazaki, Tooru Matsubara
  • Publication number: 20130245875
    Abstract: A control device of a vehicle drive device includes: a hydraulic power transmission device including an input-side rotating element to which power from an engine is input and an output-side rotating element outputting power to drive wheels; a first electric motor directly or indirectly coupled to the input-side rotating element; and a second electric motor directly or indirectly coupled to the drive wheels.
    Type: Application
    Filed: November 26, 2010
    Publication date: September 19, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Imamura, Atsushi Tabata, Tooru Matsubara, Koichi Okuda, Kenta Kumazaki, Keita Imai, Shunya Kato, Yasuhiro Hiasa
  • Patent number: 8523736
    Abstract: A control apparatus for a vehicular power transmitting system includes a shifting-point changing portion configured to change a shifting point at which a determination to perform a shifting action of a transmission portion is made, such that a shifting portion is changed according to a shifting response of the transmission portion. Alternatively, the control apparatus includes a shift-control start-point changing portion configured to change a shift-control start point at which the determination to perform the shifting action is made, such that the shift-control start point is changed according to the shifting response of the transmission portion, and a compulsory shift-control starting portion configured to make the determination when an operating point of a differential portion electric motor has reached the shift-control start point.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: September 3, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuya Imamura, Yuji Iwase, Atsushi Tabata, Kenta Kumazaki, Tooru Matsubara