Patents by Inventor Kentaro Eda

Kentaro Eda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837668
    Abstract: The capacity of a MOS capacitor is increased. A semiconductor element includes a first semiconductor region, an insulation film, a gate electrode, and a second semiconductor region. The first semiconductor region is arranged on a semiconductor substrate and has a recess on the surface. The insulation film is arranged adjacent to the surface of the first semiconductor region. The gate electrode is arranged adjacent to the insulation film and constitutes a MOS capacitor with the first semiconductor region. The second semiconductor region is arranged adjacent to the first semiconductor region on the semiconductor substrate, formed in the same conductive type as the first semiconductor region, and supplies a carrier to the first semiconductor region when the MOS capacitor is charged and discharged.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 5, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Chihiro Tomita, Tomohiro Hirai, Shintaro Okamoto, Kentaro Eda, Takashi Watanabe, Kazuki Yamaguchi, Norikazu Kasahara, Kohei Suzuki
  • Publication number: 20230154948
    Abstract: A charge transfer path of a transfer transistor constituted by a vertical transistor is reduced. An imaging element includes a photoelectric conversion unit, a charge holding unit, a charge transfer unit, and an image signal generation unit. The photoelectric conversion unit is disposed on a semiconductor substrate and generates charge corresponding to incident light by photoelectric conversion. The charge holding unit holds the charge. The charge transfer unit includes an opening portion, which is formed in the semiconductor substrate and having a polygonal shape in a plan view, and an embedded gate disposed in the opening portion and transfers the charge from the photoelectric conversion unit to the charge holding unit. The image signal generation unit generates an image signal based on the held charge.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 18, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Tatsuya TAKANO, Kentaro EDA, Shintaro OKUJO, Kuniaki UTSUMI
  • Publication number: 20220052208
    Abstract: The capacity of a MOS capacitor is increased. A semiconductor element includes a first semiconductor region, an insulation film, a gate electrode, and a second semiconductor region. The first semiconductor region is arranged on a semiconductor substrate and has a recess on the surface. The insulation film is arranged adjacent to the surface of the first semiconductor region. The gate electrode is arranged adjacent to the insulation film and constitutes a MOS capacitor with the first semiconductor region. The second semiconductor region is arranged adjacent to the first semiconductor region on the semiconductor substrate, formed in the same conductive type as the first semiconductor region, and supplies a carrier to the first semiconductor region when the MOS capacitor is charged and discharged.
    Type: Application
    Filed: September 30, 2019
    Publication date: February 17, 2022
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Chihiro TOMITA, Tomohiro HIRAI, Shintaro OKAMOTO, Kentaro EDA, Takashi WATANABE, Kazuki YAMAGUCHI, Norikazu KASAHARA, Kohei SUZUKI
  • Patent number: 9219175
    Abstract: According to one embodiment, an imaging device includes a semiconductor layer, an electrode, first and second insulating films, and a light blocking film. The semiconductor layer has a first surface and a second surface on an opposite side to the first surface, and includes pixels configured to detect light. The electrode is provided on the first surface and is configured to control an output of the pixels. The first insulating film is provided on the second surface. The second insulating film is provided on the first insulating film and has a smaller refractive index in a visible light range than the first insulating film. One end of the light blocking film is located in the second insulating film or at a same level as a surface of the second insulating film. Another end of the light blocking film is located in the semiconductor layer.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 22, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Fukumizu, Takaaki Minami, Kentaro Eda, Takeshi Yosho
  • Publication number: 20150115388
    Abstract: A solid-state imaging device includes a plurality of photoelectric transducers disposed in an array in a semiconductor layer. Each photoelectric transducer includes a first semiconductor region of a first conductivity type and a second semiconductor region of a second conductivity type. The first and second regions are in direct contact. An isolation region is between each adjacent pair of photoelectric transducers. The isolation region includes an insulating material extending from a surface of the semiconductor layer and a third semiconductor region of the first conductivity type surrounding the insulating material. The third semiconductor region is between the insulating material and the first semiconductor region, and the first semiconductor region is between the second and third semiconductor regions.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Inventors: Kentaro EDA, Kenichi YOSHINO, Shintaro OKUJO, Hiroyuki FUKUMIZU, Takaaki MINAMI, Takeshi YOUSYOU, Hiroaki ASHIDATE
  • Publication number: 20150001660
    Abstract: According to one embodiment, an imaging device includes a semiconductor layer, an electrode, first and second insulating films, and a light blocking film. The semiconductor layer has a first surface and a second surface on an opposite side to the first surface, and includes pixels configured to detect light. The electrode is provided on the first surface and is configured to control an output of the pixels. The first insulating film is provided on the second surface. The second insulating film is provided on the first insulating film and has a smaller refractive index in a visible light range than the first insulating film. One end of the light blocking film is located in the second insulating film or at a same level as a surface of the second insulating film. Another end of the light blocking film is located in the semiconductor layer.
    Type: Application
    Filed: March 10, 2014
    Publication date: January 1, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Fukumizu, Takaaki Minami, Kentaro Eda, Takeshi Yosho
  • Patent number: 8004084
    Abstract: A semiconductor device includes a semiconductor wafer, a source region and a drain region formed within the semiconductor wafer, a gate electrode formed on the semiconductor wafer between the source region and the drain region, an interlayer film formed on the semiconductor wafer and the gate electrode, and a dummy floating pattern embedded into the interlayer film, having a film containing metal or a metallic compound having tensile stress or compressive stress and formed to be spaced from the semiconductor wafer and the gate electrode.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 23, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kentaro Eda
  • Publication number: 20100295131
    Abstract: A buried insulating layer is buried at a position lower than a surface of a semiconductor substrate, and a cap insulating layer, which is made of a material different from the buried insulating layer, is formed on the buried insulating layer not to protrude into a shoulder portion of a step between the semiconductor substrate and the buried insulating layer.
    Type: Application
    Filed: March 16, 2010
    Publication date: November 25, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kentaro Eda
  • Publication number: 20100148272
    Abstract: A semiconductor device includes a semiconductor substrate having a first region including an n-type active element and a second region including a p-type active element, an element isolation region isolating plurality of the n-type active element and plurality of the p-type active element, a first insulating film having a tensile stress provided on the first region and on the element isolation regions of the second regions, and a second insulating film having a compression stress provided on the second region.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 17, 2010
    Inventor: Kentaro EDA
  • Publication number: 20090166750
    Abstract: A semiconductor device includes a semiconductor wafer, a source region and a drain region formed within the semiconductor wafer, a gate electrode formed on the semiconductor wafer between the source region and the drain region, an interlayer film formed on the semiconductor wafer and the gate electrode, and a dummy floating pattern embedded into the interlayer film, having a film containing metal or a metallic compound having tensile stress or compressive stress and formed to be spaced from the semiconductor wafer and the gate electrode.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 2, 2009
    Inventor: Kentaro Eda
  • Publication number: 20070069307
    Abstract: A semiconductor device includes a trench formed in a surface of a semiconductor substrate and defining a device region. A MOSFET includes a gate insulating film formed on the semiconductor substrate, a gate electrode formed on the gate insulating film, and a source/drain diffusion area sandwiching a channel region below the gate electrode. A stress film is continuously formed over the gate electrode and source/drain diffusion area and in the trench and applies a tensile stress or compressive stress to the semiconductor substrate. An insulating film buries the trench via the stress film.
    Type: Application
    Filed: September 26, 2006
    Publication date: March 29, 2007
    Inventor: Kentaro Eda