Patents by Inventor Kentaro Fukuda

Kentaro Fukuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964416
    Abstract: A resin part includes a molded main body that has a plate shape with a longitudinal direction and is constituted of an injection-molded product. The resin part has a gate portion that is a vestige of a resin injection gate. The gate portion is located in an end face part of the molded main body to cross a position corresponding to a center of gravity of the molded main body; the end face part extends in the longitudinal direction of the molded main body.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: April 23, 2024
    Assignee: DENSO CORPORATION
    Inventors: Yohei Yoshimura, Takeshi Kusano, Kentaro Fukuda, Mitsuhiro Suzuki
  • Patent number: 11801626
    Abstract: A resin part includes a plate-shaped molded main body that is constituted of an injection-molded product. Of plate surfaces of the molded main body, a surface on an opposite side to a surface requiring surface accuracy constitutes a pressure-application surface to which pressure is applied by a movable insert. A parting line is formed on the pressure-application surface by the movable insert to satisfy the following relationship: (t/4)?x?(3t/2), where x is a distance from an end edge part of the molded main body to the parting line and t is a thickness of the molded main body.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: October 31, 2023
    Assignee: DENSO CORPORATION
    Inventors: Yohei Yoshimura, Takeshi Kusano, Kentaro Fukuda, Mitsuhiro Suzuki
  • Publication number: 20230011420
    Abstract: A cooling system for cooling a fuel cell on a vehicle includes a radiator, a branch portion connected to an outlet side of the radiator, a confluence portion connected to an inlet side of the radiator, a first passage and a second passage connected in parallel between the confluence portion and the branch portion, a fuel cell and a first pump provided in the first passage, a resistor and a second pump provided in the second passage, and a backflow preventer provided in the second passage. The first passage has no backflow preventer.
    Type: Application
    Filed: July 5, 2022
    Publication date: January 12, 2023
    Inventors: Kentaro FUKUDA, Ryosuke YAMADA, Shunjiro KIKAWA, Hisashi HIGASHI, Hiroya KAWASAKI, Masahiro KIMURA, Ryuya TAKAHASHI
  • Publication number: 20210316487
    Abstract: A resin part includes a molded main body that has a plate shape with a longitudinal direction and is constituted of an injection-molded product. The resin part has a gate portion that is a vestige of a resin injection gate. The gate portion is located in an end face part of the molded main body to cross a position corresponding to a center of gravity of the molded main body; the end face part extends in the longitudinal direction of the molded main body.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 14, 2021
    Inventors: Yohei YOSHIMURA, Takeshi KUSANO, Kentaro FUKUDA, Mitsuhiro SUZUKI
  • Publication number: 20210316488
    Abstract: A resin part includes a plate-shaped molded main body that is constituted of an injection-molded product. Of plate surfaces of the molded main body, a surface on an opposite side to a surface requiring surface accuracy constitutes a pressure-application surface to which pressure is applied by a movable insert. A parting line is formed on the pressure-application surface by the movable insert to satisfy the following relationship: (t/4)?x?(3t/2), where x is a distance from an end edge part of the molded main body to the parting line and t is a thickness of the molded main body.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 14, 2021
    Inventors: Yohei YOSHIMURA, Takeshi KUSANO, Kentaro FUKUDA, Mitsuhiro SUZUKI
  • Patent number: 11094950
    Abstract: A system includes a fuel cell stack that receives a fluid, an actuator to increase or decrease a fluid temperature of the fluid, a pipe to facilitate flow of the fluid, and a memory designed to store a model of the fuel cell circuit. The system also includes an ECU that calculates mass flow values of the fluid through the fuel cell stack or the pipe based on a previously-determined mass flow value and the model of the fuel cell circuit. The ECU also calculates a plurality of pressure values corresponding to the fuel cell stack or the pipe based on the plurality of mass flow values and the model, controls the actuator position of the actuator to increase or decrease the fluid temperature based on at least one of the plurality of mass flow values and at least one of the plurality of pressure values.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 17, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Daniel Folick, Jared Farnsworth, Shigeki Hasegawa, Kentaro Fukuda
  • Patent number: 10777831
    Abstract: A system for heating or cooling a fuel cell circuit of a vehicle includes a fuel cell stack, a temperature sensor to detect a fluid temperature of the fluid, a pump to pump the fluid through the fuel cell circuit, and an ECU. The ECU is designed to determine a temperature control signal based on the fluid temperature of the fluid. The ECU is also designed to calculate a desired mass flow rate of the fluid through the fuel cell stack based on the temperature control signal. The ECU is also designed to calculate a desired pump speed of the pump based on the desired mass flow rate of the fluid through the fuel cell stack. The ECU is also designed to control the pump to pump the fluid at the desired pump speed to increase or decrease the fluid temperature of the fluid.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 15, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Daniel Folick, Jared Farnsworth, Shigeki Hasegawa, Kentaro Fukuda
  • Patent number: 10720655
    Abstract: A system includes a fuel cell stack having a plurality of fuel cells and designed to receive a fluid and to heat the fluid. The system also includes an actuator to increase or decrease a fluid temperature of the fluid and an ECU. The ECU can determine a temperature control signal corresponding to a desired temperature of the fluid and perform a feedforward control of the actuator to increase or decrease the fluid temperature towards the desired temperature. The ECU can also determine a temperature difference between the fluid temperature and the desired temperature, and can determine a sensitivity that corresponds a change in a parameter value or the actuator position to a change in the fluid temperature. The ECU can also apply the sensitivity to the temperature difference to determine an error signal, and control the actuator based on the error signal.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 21, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared Farnsworth, Daniel Folick, Naoki Tomi, Shigeki Hasegawa, Kentaro Fukuda
  • Patent number: 10714773
    Abstract: A system for heating or cooling a fuel cell circuit includes a fuel cell stack designed to receive a fluid. The system also includes a temperature sensor to detect a fluid temperature of the fluid, an actuator to increase or decrease the fluid temperature, and an electronic control unit (ECU). The ECU is designed to receive a target fuel cell temperature corresponding to the fuel cell stack and based on a power request, to determine a temperature rate of change corresponding to a desired rate of temperature change of a current fuel cell temperature of the fuel cell stack to achieve the target fuel cell temperature based on the target fuel cell temperature, and to control the actuator to increase or decrease the fluid temperature based on the temperature rate of change to cause the current fuel cell temperature to increase or decrease to the target fuel cell temperature.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 14, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared Farnsworth, Daniel Folick, Shigeki Hasegawa, Kentaro Fukuda
  • Patent number: 10682664
    Abstract: In a microvolume-liquid dispenser, there is performed an application operation for dispensing a microvolume liquid present in an amount measured in nanoliters or picoliters from a nozzle tip-end opening and applying the microvolume liquid to an application surface. When the application operation has not been performed over a time interval longer than a set time interval ta, a tip-end liquid surface of an application liquid in the nozzle tip-end opening is caused to vibrate at a high amplitude that includes the position of a liquid surface height from immediately before application in the case of application at equal time intervals. The subsequently performed application operation is performed at a point in time when the liquid surface height has returned to the liquid surface height. The operation for applying the microvolume application liquid can be precisely performed in the same manner as when application is performed at equal time intervals.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: June 16, 2020
    Assignee: ENGINEERING SYSTEM CO., LTD.
    Inventors: Kazuki Tomita, Kentaro Fukuda
  • Patent number: 10672555
    Abstract: One object is to provide a new type of coil element capable of reducing leakage magnetic flux. A coil element according to one embodiment of the present invention is provided with an insulator body made of a magnetic material and having a mounting surface and an upper surface opposed to said mounting surface, a coil conductor embedded in the insulator body, an external electrode electrically connected to the coil conductor, a shield layer provided on the upper surface of the insulator body and having a larger magnetic permeability than the insulator body, and a plating layer formed to cover the mounting surface of the external electrode and having a larger magnetic permeability than the insulator body. The plating layer is formed to be thicker than the shield layer.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 2, 2020
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Kentaro Fukuda, Toshio Hiraoka
  • Publication number: 20190184419
    Abstract: In a microvolume-liquid dispenser, there is performed an application operation for dispensing a microvolume liquid present in an amount measured in nanoliters or picoliters from a nozzle tip-end opening and applying the microvolume liquid to an application surface. When the application operation has not been performed over a time interval longer than a set time interval ta, a tip-end liquid surface of an application liquid in the nozzle tip-end opening is caused to vibrate at a high amplitude that includes the position of a liquid surface height from immediately before application in the case of application at equal time intervals. The subsequently performed application operation is performed at a point in time when the liquid surface height has returned to the liquid surface height. The operation for applying the microvolume application liquid can be precisely performed in the same manner as when application is performed at equal time intervals.
    Type: Application
    Filed: November 27, 2018
    Publication date: June 20, 2019
    Applicant: Engineering System Co., Ltd.
    Inventors: Kazuki TOMITA, Kentaro FUKUDA
  • Patent number: 10323453
    Abstract: A multiple-glazed glass unit of the present invention is adapted to separate an indoor space and an outdoor space and includes a pair of glass panes opposed across a gap layer to be spaced at a predetermined distance from each other. Low-emissivity (Low-E) films are formed on both principal surfaces of one of the pair of glass panes that is located closer to the indoor space. The low-emissivity film formed on one of the two principal surfaces that faces the indoor space has an arithmetic average surface roughness Ra of 14 nm or less. This multiple-glazed glass unit is configurable to have a higher SHGC value ever than before as well as keeping a low U-value.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: June 18, 2019
    Assignee: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Kentaro Fukuda, Koji Iwata, Tetsuo Minaai
  • Publication number: 20190165395
    Abstract: A system includes a fuel cell stack that receives a fluid, an actuator to increase or decrease a fluid temperature of the fluid, a pipe to facilitate flow of the fluid, and a memory designed to store a model of the fuel cell circuit. The system also includes an ECU that calculates mass flow values of the fluid through the fuel cell stack or the pipe based on a previously-determined mass flow value and the model of the fuel cell circuit. The ECU also calculates a plurality of pressure values corresponding to the fuel cell stack or the pipe based on the plurality of mass flow values and the model, controls the actuator position of the actuator to increase or decrease the fluid temperature based on at least one of the plurality of mass flow values and at least one of the plurality of pressure values.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Daniel Folick, Jared Farnsworth, Shigeki Hasegawa, Kentaro Fukuda
  • Publication number: 20190165396
    Abstract: A system for heating or cooling a fuel cell circuit includes a fuel cell stack designed to receive a fluid. The system also includes a temperature sensor to detect a fluid temperature of the fluid, an actuator to increase or decrease the fluid temperature, and an electronic control unit (ECU). The ECU is designed to receive a target fuel cell temperature corresponding to the fuel cell stack and based on a power request, to determine a temperature rate of change corresponding to a desired rate of temperature change of a current fuel cell temperature of the fuel cell stack to achieve the target fuel cell temperature based on the target fuel cell temperature, and to control the actuator to increase or decrease the fluid temperature based on the temperature rate of change to cause the current fuel cell temperature to increase or decrease to the target fuel cell temperature.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Jared Farnsworth, Daniel Folick, Shigeki Hasegawa, Kentaro Fukuda
  • Publication number: 20190165394
    Abstract: A system for heating or cooling a fuel cell circuit of a vehicle includes a fuel cell stack, a temperature sensor to detect a fluid temperature of the fluid, a pump to pump the fluid through the fuel cell circuit, and an ECU. The ECU is designed to determine a temperature control signal based on the fluid temperature of the fluid. The ECU is also designed to calculate a desired mass flow rate of the fluid through the fuel cell stack based on the temperature control signal. The ECU is also designed to calculate a desired pump speed of the pump based on the desired mass flow rate of the fluid through the fuel cell stack. The ECU is also designed to control the pump to pump the fluid at the desired pump speed to increase or decrease the fluid temperature of the fluid.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Daniel Folick, Jared Farnsworth, Shigeki Hasegawa, Kentaro Fukuda
  • Publication number: 20190165387
    Abstract: A system includes a fuel cell stack having a plurality of fuel cells and designed to receive a fluid and to heat the fluid. The system also includes an actuator to increase or decrease a fluid temperature of the fluid and an ECU. The ECU can determine a temperature control signal corresponding to a desired temperature of the fluid and perform a feedforward control of the actuator to increase or decrease the fluid temperature towards the desired temperature. The ECU can also determine a temperature difference between the fluid temperature and the desired temperature, and can determine a sensitivity that corresponds a change in a parameter value or the actuator position to a change in the fluid temperature. The ECU can also apply the sensitivity to the temperature difference to determine an error signal, and control the actuator based on the error signal.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Jared Farnsworth, Daniel Folick, Naoki Tomi, Shigeki Hasegawa, Kentaro Fukuda
  • Patent number: 10221060
    Abstract: Provided is a microvolume liquid dispensing method in which a variable capacity passage section of a liquid passage in a microvolume liquid dispenser is pressurized from the outside and shrunk in a direction that reduces the internal capacity thereof so that a liquid that is within the variable capacity passage section is pushed toward both a downstream passage section and an up stream passage section. A microvolume of the liquid is pushed toward the downstream passage section as a result of the downstream passage section having a much larger liquid passage resistance than the upstream passage section. It is thus possible to precisely drip a microvolume liquid of a picoliter order from the tip opening of a nozzle by simple control.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: March 5, 2019
    Assignee: ENGINEERING SYSTEM CO., LTD.
    Inventors: Shinya Ishida, Kentaro Fukuda
  • Publication number: 20190002762
    Abstract: Provided is a dosimeter capable of reading out a dose multiple times and excellent in biological tissue equivalence, and a radiation measuring method using this dosimeter. The dosimeter includes a detecting element containing magnesium oxide and a dose measuring system thereof is a radio-photoluminescence system. The detecting element preferably comprises a single-crystal body or a sintered body of magnesium oxide, and more preferably further contains a rare-earth element such as samarium. Moreover, the radiation measuring method uses the above-described dosimeter and the dose measuring system thereof is a radio-photoluminescence system.
    Type: Application
    Filed: December 26, 2016
    Publication date: January 3, 2019
    Inventors: Takayuki Yanagida, Go Okada, Kentaro Fukuda, Kentaro Matsuo, Takumi Kato
  • Publication number: 20180096783
    Abstract: One object is to provide a new type of coil element capable of reducing leakage magnetic flux. A coil element according to one embodiment of the present invention is provided with an insulator body made of a magnetic material and having a mounting surface and an upper surface opposed to said mounting surface, a coil conductor embedded in the insulator body, an external electrode electrically connected to the coil conductor, a shield layer provided on the upper surface of the insulator body and having a larger magnetic permeability than the insulator body, and a plating layer formed to cover the mounting surface of the external electrode and having a larger magnetic permeability than the insulator body. The plating layer is formed to be thicker than the shield layer.
    Type: Application
    Filed: September 15, 2017
    Publication date: April 5, 2018
    Inventors: Kentaro FUKUDA, Toshio HIRAOKA