Patents by Inventor Kentaro Ishihara
Kentaro Ishihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210363295Abstract: The present application provides a polycarbonate resin composition which has a high refractive index and a low Abbe number, and high thermal stability. The polycarbonate resin composition according to one embodiment of the present application includes a polycarbonate resin and an antioxidant, wherein the polycarbonate resin contains a constituent unit represented by general formula (1) (in general formula (1), X represents an alkylene group having 1-4 carbon atoms, and a and b each independently represent an integer of 1-10), and the antioxidant content is 1-3000 ppm.Type: ApplicationFiled: January 18, 2019Publication date: November 25, 2021Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Munenori SHIRATAKE, Kentaro ISHIHARA, Koji HIROSE, Shinya IKEDA, Noriyuki KATO, Mitsuteru KONDO, Shoko SUZUKI, Kensuke OSHIMA, Shuya NAGAYAMA
-
Publication number: 20210355058Abstract: The present invention relates to compounds of the formula (I), which are suitable as monomers for preparing thermoplastic resins having beneficial optical properties and which can be used for producing optical devices: where A1, A2 are selected from mono- or bicyclic aromatic radicals and mono- or bicyclic heteroaromatic radicals, X represents e.g. a single bond, O, NH, CR6R7, Y is e.g. absent or represents a single bond, O, NH, CR8R9; R1, R2 are hydrogen, a radical Ar? or a radical Ra; R3 is Alk, O-Alk?-, O-Alk?-[O-Alk?]0, O—CH2—Ar—C(O)—, O—C(O)—Ar—C(O)— or O-Alk-C(O)—, where in the last five moieties the left O is bound to A1 and A2, respectively, m, n are 0, 1 or 2; o is an integer from 1 to 10; R4, R5 are e.g. selected from CN and a radical Ra; R6, R8 are e.g. selected from hydrogen, a radical Ar? and a radical Ra; R7, R9 are e.g. selected from hydrogen, C1-C4-alkyl and a radical Ar?; Ra is selected from the group consisting of C?C—R11 and Ar—C?C—R11; R11 is e.g.Type: ApplicationFiled: October 18, 2019Publication date: November 18, 2021Inventors: Munenori Shiratake, Kentaro Ishihara, Koji Hirose, Shinya Ikeda, Noriyuki Kato, Mitsuteru Kondo, Shoko Murata, Kensuke Oshima, Florian Stolz
-
Publication number: 20210340317Abstract: The present invention relates to compounds of the formula (I), which are suitable as monomers for preparing thermoplastic resins having beneficial optical properties and which can be used for producing optical devices. In Formula (I), A1, A2 are selected from mono- or bicyclic aromatic radicals and mono- or bicyclic heteroaromatic radicals; X represents e.g. a single bond, O, NH, CR6R7; Y is e.g. absent or represents a single bond, O, NH, CR8R9; R1, R2 are hydrogen, a radical Ar? or a radical Ra; R3 is Alk, O-Alk?-, O-Alk?-[O-Alk?]o, O—CH2—Ar—C(O)—, O—C(O)—Ar—C(O)— or O-Alk-C(O)—, where in the last five moieties the left O is bound to A1 and A2, respectively; m, n are 0, 1 or 2; o is an integer from 1 to 10; R4, R5 are e.g. selected from CN and a radical Ra; R6, R8 are e.g. selected from hydrogen, a radical Ar? and a radical Ra; R7, R9 are e.g. selected from hydrogen, C1-C4-alkyl and a radical Ar?; Ra is selected from the group consisting of C?C—R11 and Ar—C?C—R11; R11 is e.g.Type: ApplicationFiled: October 18, 2019Publication date: November 4, 2021Inventors: Karl REUTER, Vasyl ANDRUSHKO, Mark KANTOR, Florian STOLZ, Philipp KOSCHKER, Munenori SHIRATAKE, Kentaro ISHIHARA, Koji HIROSE, Shinya IKEDA, Noriyuki KATO, Mitsuteru KONDO, Shoko SUZUKI, Kensuke OSHIMA
-
Patent number: 11132205Abstract: An electronic control device is configured to execute processing unit execution operation while executing processing part activation operation. In the processing part activation operation, the activation main processing is performed separately on each of a plurality of processing parts included in a control program, and a start address of a processing unit that is included in a processing part for which the activation main processing has been completed is switched from invalid to valid, in ascending order of the lengths of activation time demanded of the processing parts to be ready for execution. In the processing unit execution operation, a processing unit that is associated with a start address switched to valid is executed.Type: GrantFiled: October 10, 2019Date of Patent: September 28, 2021Assignee: Mitsubishi Electric CorporationInventor: Kentaro Ishihara
-
Patent number: 11072573Abstract: The present invention relates to binaphthyl compounds of the formula (I), which are suitable as monomers for preparing polycarbonate resins having beneficial optical properties and which can be used for producing optical lenses: Formula (I) where X is C2-C4-alkandiyl or C1-C4-alkandiyl-C(O)—, where C(O) is bound to the oxygen atom of the hydroxyl group and where C2-C4-alkandiyl or C1-C4-alkandiyl, respectively, are unsubstituted or carry a phenyl ring; R and R? are identical or different and selected from mono or polycyclic aryl having from 6 to 36 carbon atoms and mono- or polycyclic hetaryl having a total of 5 to 36 atoms, which are ring members, where 1, 2, 3 or 4 of these atoms are selected from nitrogen, sulfur and oxygen, while the remainder of these atoms are carbon atoms, where mono- or polycyclic aryl and mono- or polycyclic hetaryl are unsubstituted or carry 1 or 2 radicals Ra, which are selected from the group consisting of CN, CH3, OCH3, O-phenyl, O-naphthyl, S-phenyl, S-naphthyl, CI or F; and, ifType: GrantFiled: August 29, 2018Date of Patent: July 27, 2021Assignee: Reuter Chemische Apparatebau E.K.Inventors: Karl Reuter, Vasyl Andrushko, Mark Kantor, Florian Stolz, Noriyuki Kato, Mitsuteru Kondo, Munenori Shiratake, Kentaro Ishihara, Shinya Ikeda, Shoko Suzuki, Koji Hirose, Kensuke Oshima, Shuya Nagayama
-
Patent number: 11002883Abstract: The present invention provides a resin composition comprising a thermoplastic resin comprising a constituting unit (A) derived from a compound represented by the following general formula (1), wherein the resin composition comprises an ultraviolet absorber in an amount of 2,000 ppm to 40,000 ppm:Type: GrantFiled: November 2, 2016Date of Patent: May 11, 2021Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Noriyuki Kato, Mitsuteru Kondo, Munenori Shiratake, Kentaro Ishihara, Koji Hirose, Shinya Ikeda
-
Patent number: 10962793Abstract: The present invention provides a method for producing a thermoplastic resin by reacting reactants comprising a dihydroxy compound. In this production method, the dihydroxy compound comprises a dihydroxy compound represented by the following formula (1), and at least one of a compound represented by the following formula (A), a compound represented by the following formula (B), and a compound represented by the following formula (C), wherein the total weight of the compound represented by the formula (A), the compound represented by the formula (B), and the compound represented by the formula (C) is 1,500 ppm or more, based on the weight (100 parts by weight) of the dihydroxy compound represented by the formula (1).Type: GrantFiled: April 12, 2019Date of Patent: March 30, 2021Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Noriyuki Kato, Mitsuteru Kondo, Munenori Shiratake, Kentaro Ishihara, Koji Hirose, Shinya Ikeda
-
Patent number: 10955680Abstract: The present invention provides a method for producing a thermoplastic resin by reacting reactants comprising a dihydroxy compound. In this production method, the dihydroxy compound comprises a dihydroxy compound represented by the following formula (1), and at least one of a compound represented by the following formula (A), a compound represented by the following formula (B), and a compound represented by the following formula (C), wherein the total weight of the compound represented by the formula (A), the compound represented by the formula (B), and the compound represented by the formula (C) is 1,500 ppm or more, based on the weight (100 parts by weight) of the dihydroxy compound represented by the formula (1).Type: GrantFiled: November 2, 2016Date of Patent: March 23, 2021Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Noriyuki Kato, Mitsuteru Kondo, Munenori Shiratake, Kentaro Ishihara, Koji Hirose, Shinya Ikeda
-
Patent number: 10934206Abstract: A technical object of the present invention is to devise a top plate for a cooking appliance that can suppress proliferation of bacteria or mold. In order to achieve the technical object, the top plate for a cooking appliance of the present invention includes: a crystallized glass substrate having a cooking surface on which a cooking device is placed; and a decorative layer formed on the cooking surface, in which the decorative layer includes 30 vol % to 100 vol % of ZnO—B2O3-based glass and 0 vol % to 70 vol % of refractory filler powder.Type: GrantFiled: February 18, 2016Date of Patent: March 2, 2021Assignee: NIPPON ELECTRIC GLASS CO., LTD.Inventor: Kentaro Ishihara
-
Publication number: 20210054143Abstract: Provided are a polycarbonate having an appropriate refractive index and an appropriate Abbe number, and comprehensively excelling in heat resistance, total light transmittance, and hue, and a molded article thereof. The polycarbonate includes a constituent unit represented by Formula [I] and a constituent unit having a hydrocarbon group containing a cyclic structure. In Formula [I], R1 and R2 each independently denote a hydrocarbon group, and each R3 independently denotes a hydrogen atom, a heteroatom-containing group, a halogen atom-containing group, a linear alkyl group having from 1 to 6 carbon atoms, a branched alkyl group having from 3 to 6 carbon atoms, or a group including an aryl group and having from 6 to 12 carbon atoms.Type: ApplicationFiled: March 8, 2019Publication date: February 25, 2021Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Munenori SHIRATAKE, Kentaro ISHIHARA, Koji HIROSE, Shinya IKEDA, Noriyuki KATO, Mitsuteru KONDO, Shoko SUZUKI, Kensuke OSHIMA, Shuya NAGAYAMA, Masahiro KANDA
-
Publication number: 20210053030Abstract: A supported catalyst for decomposing an organic substance that includes a support and a catalyst particle supported on the support. The catalyst particle contains a perovskite-type composite oxide represented by AxByMzOw, where the A contains at least one selected from Ba and Sr, the B contains Zr, the M is at least one selected from Mn, Co, Ni and Fe, y+z=1, x?0.995, z?0.4, and w is a positive value satisfying electrical neutrality. A film thickness of a catalyst-supporting film supported on the support and containing the catalyst particle is 5 ?m or more, or a supported amount as determined by normalizing a mass of the catalyst particle supported on the support by a volume of the support is 45 g/L or more.Type: ApplicationFiled: November 10, 2020Publication date: February 25, 2021Inventors: Satoshi Kuretake, Kentaro Ishihara, Nario Sugahara
-
Publication number: 20210016259Abstract: A supported catalyst for decomposing an organic substance that includes a carrier and catalyst particles supported on the carrier. The catalyst particles contain a perovskite-type composite oxide represented by AxByMzOw, where A contains at least one of Ba and Sr, B contains Zr, M is at least one of Mn, Co, Ni, and Fe, y+z=1, x>1, z<0.4, and w is a positive value that satisfies electrical neutrality. An organic substance decomposition rate after the supported catalyst is subjected to a heat treatment at 950° C. for 48 hours is greater than 0.97 when the organic substance decomposition rate before the heat treatment is regarded as 1, and an amount of the catalyst particles peeled off when the supported catalyst is ultrasonicated in water at 28 kHz and 220 W for 15 minutes is less than 1 wt % of the catalyst particles before untrasonication.Type: ApplicationFiled: October 6, 2020Publication date: January 21, 2021Inventors: Satoshi Kuretake, Nario Sugahara, Kentaro Ishihara
-
Publication number: 20200406236Abstract: A catalyst for decomposing an organic substance, the catalyst having a body which has a plurality of pores and the body contains a perovskite-type composite oxide represented by AxByMzOw, where the A contains at least one selected from Ba and Sr, the B contains Zr, the M is at least one selected from Mn, Co, Ni, and Fe, 1.001?x?1.1, 0.05?z?0.2, y+z=1, and w is a positive value that satisfies electrical neutrality. The average pore diameter of the plurality of pores is 49 nm to 260 nm and the pore volume of each of the plurality of pores is 0.08 cm3/g to 0.37 cm3/g.Type: ApplicationFiled: September 11, 2020Publication date: December 31, 2020Inventors: Kentaro Ishihara, Nario Sugahara, Satoshi Kuretake, Naoya Mori, Hideto Sato
-
Publication number: 20200406245Abstract: A honeycomb-structured catalyst for decomposing an organic substance, which includes a catalyst particle. The catalyst particle contains a perovskite-type composite oxide represented by AxByMzOw, where the A contains at least of Ba and Sr, the B contains Zr, the M is at least one of Mn, Co, Ni, and Fe, y+z=1, 1.001?x?1.05, 0.05?z?0.2, and w is a positive value that satisfies electrical neutrality. The toluene decomposition rate is greater than 90% when toluene is decomposed using the honeycomb-structured catalyst subjected to a heat treatment at 1200° C. for 48 hours and a gas that contains 50 ppm toluene, 80% nitrogen, and 20% oxygen as a volume concentration as a target at a space velocity of 30,000/h and a catalyst temperature of 400° C.Type: ApplicationFiled: September 11, 2020Publication date: December 31, 2020Inventors: Naoya Mori, Satoshi Kuretake, Nario Sugahara, Kentaro Ishihara
-
Publication number: 20200354299Abstract: The present invention relates to binaphthyl compounds of the formula (I), which are suitable as monomers for preparing polycarbonate resins having beneficial optical properties and which can be used for producing optical lenses: Formula (I) where X is C2-C4-alkandiyl or C1-C4-alkandiyl-C(O)—, where C(O) is bound to the oxygen atom of the hydroxyl group and where C2-C4-alkandiyl or C1-C4-alkandiyl, respectively, are unsubstituted or carry a phenyl ring; R and R? are identical or different and selected from mono or polycyclic aryl having from 6 to 36 carbon atoms and mono- or polycyclic hetaryl having a total of 5 to 36 atoms, which are ring members, where 1, 2, 3 or 4 of these atoms are selected from nitrogen, sulfur and oxygen, while the remainder of these atoms are carbon atoms, where mono- or polycyclic aryl and mono- or polycyclic hetaryl are unsubstituted or carry 1 or 2 radicals Ra, which are selected from the group consisting of CN, CH3, OCH3, O-phenyl, O-naphthyl, S-phenyl, S-naphthyl, CI or F; and, ifType: ApplicationFiled: August 29, 2018Publication date: November 12, 2020Inventors: Karl REUTER, Vasyl ANDRUSHKO, Mark KANTOR, Florian STOLZ, Noriyuki KATO, Mitsuteru KONDO, Munenori SHIRATAKE, Kentaro ISHIHARA, Shinya IKEDA, Shoko SUZUKI, Koji HIROSE, Kensuke OSHIMA, Shuya NAGAYAMA
-
Publication number: 20200354516Abstract: A polycarbonate resin having a high refractive index, low Abbe number, and high moist heat resistance that includes structural units represented by general formula (1):Type: ApplicationFiled: July 29, 2020Publication date: November 12, 2020Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Noriyuki KATO, Mitsuteru KONDO, Kentaro ISHIHARA, Munenori SHIRATAKE, Koji HIROSE, Shinya IKEDA, Kensuke OSHIMA, Shuya NAGAYAMA, Shoko SUZUKI
-
Patent number: 10767007Abstract: The present invention provides a polycarbonate resin having a high refractive index, low Abbe number, and high moist heat resistance. The above problem, according to one embodiment, can be solved by a polycarbonate resin including structural units represented by general formula (1).Type: GrantFiled: July 19, 2017Date of Patent: September 8, 2020Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Noriyuki Kato, Mitsuteru Kondo, Kentaro Ishihara, Munenori Shiratake, Koji Hirose, Shinya Ikeda, Kensuke Oshima, Shuya Nagayama, Shoko Suzuki
-
Patent number: 10756879Abstract: A master control device connected to a plurality of slave control devices via a network is configured to include an own local time counted by a counter unit, in a message and transmit the message to the slave control devices by the timing synchronization unit, calculate a difference between a reception time of a message transmitted from the slave control device, which has received the message, at a timing corrected in accordance with the local time and a pre-calculated message reception predicted time by a timing synchronization determination unit, calculate a correction amount for timing of the slave control devices using the difference by a timing synchronization correction unit, add the correction amount to the local time, include the local time in a message, and transmit the message to the slave control devices.Type: GrantFiled: July 31, 2018Date of Patent: August 25, 2020Assignee: Mitsubishi Electric CorporationInventors: Mikiya Yoshida, Kentaro Ishihara, Toshinori Matsui
-
Patent number: 10711100Abstract: The present invention provides a method for producing a thermoplastic resin by reacting reactants comprising a dihydroxy compound.Type: GrantFiled: April 12, 2019Date of Patent: July 14, 2020Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Noriyuki Kato, Mitsuteru Kondo, Munenori Shiratake, Kentaro Ishihara, Koji Hirose, Shinya Ikeda
-
Patent number: 10689486Abstract: According to one embodiment, a polyester resin is provided, which includes a structural unit derived from a compound represented by general formula (1), a structural unit derived from a compound represented by general formula (2), and a structural unit derived from a dicarboxylic acid or a derivative thereof.Type: GrantFiled: May 1, 2015Date of Patent: June 23, 2020Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.Inventors: Noriyuki Kato, Hirohito Ishizuka, Munenori Shiratake, Kentaro Ishihara