Patents by Inventor Kentaro Nakahara

Kentaro Nakahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9443661
    Abstract: An object of the present invention is to provide a power storage device with excellent cycle property, employing a cathode containing a nitroxyl polymer. To attain the object in the present invention, in the power storage device employing a cathode comprising a nitroxyl polymer, a lithium or lithium alloy anode is used as an anode active material and the cathode is in direct contact with the anode.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 13, 2016
    Assignee: NEC CORPORATION
    Inventors: Kentaro Nakahara, Jiro Iriyama, Shigeyuki Iwasa, Masahiro Suguro, Masaharu Satoh
  • Publication number: 20160218360
    Abstract: There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is reduced. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula (1) is coated with an inorganic material: LixM1(y-p)MnpM2(z-p)FeqO(2-?) (1) (wherein 1.05?x?1.32, 0.33?y?0.63, 0.06?z?0.50, 0<p?0.63, 0.06?q?0.50, 0???0.80, y?p, and z?q; M1 is at least one element selected from Ti and Zr; and M2 is at least one element selected from the group consisting of Co, Ni and Mn).
    Type: Application
    Filed: August 19, 2014
    Publication date: July 28, 2016
    Applicants: NEC Corporation, Tanaka Chemical Corporation
    Inventors: Kentaro NAKAHARA, Ryota YUGE, Noriyuki TAMURA, Sadanori HATTORI, Kentaro KURATANI, Kyousuke DOUMAE, Hideka SHIBUYA, Mitsuharu TABUCHI
  • Publication number: 20160190562
    Abstract: A negative electrode for a lithium ion secondary battery, including a negative electrode active material layer containing a negative electrode active material including silicon (Si) as a constituent element, in which a coating including iron (Fe), manganese (Mn) and oxygen (O) as constituent elements is formed on a surface of the negative electrode active material layer.
    Type: Application
    Filed: August 20, 2014
    Publication date: June 30, 2016
    Applicant: NEC Corporation
    Inventors: Noriyuki TAMURA, Ryota YUGE, Qian CHENG, Kentaro NAKAHARA
  • Publication number: 20160172677
    Abstract: The present invention relates to a negative electrode for a lithium ion secondary battery comprising an oxetane compound represented by a predetermined formula in an amount within a range of 0.001% by mass or more and 5.0% by mass or less based on the amount of a negative electrode active material, and a lithium ion secondary battery using the same.
    Type: Application
    Filed: August 4, 2014
    Publication date: June 16, 2016
    Applicant: NEC Corporation
    Inventors: MIDORI SHIMURA, NORIYUKI TAMURA, KENTARO NAKAHARA
  • Patent number: 9356292
    Abstract: The present invention provides a radical composition capable of suppressing elution of electrode components in an electrolyte solution when used in an electrode for a secondary battery, and a battery using the radical composition. The present invention relates to a radical composition including a pyrroline nitroxide polymer and polyethylene glycols.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 31, 2016
    Assignees: SUMITOMO SEIKA CHEMICALS CO., LTD., NEC CORPORATION
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Sosuke Yamaguchi, Nobutaka Fujimoto, Yuji Kinpara, Shun Hashimoto, Shigeyuki Iwasa, Kentaro Nakahara
  • Publication number: 20160126549
    Abstract: The present invention relates to a lithium manganese composite oxide having a metal-containing compound film and a carbon coating, in which at least a part of a surface of the lithium manganese composite oxide represented by Formula (1) is coated with the metal-containing compound film, and at least a part of the surface thereof is further coated with the carbon coating. The present invention can provide a positive electrode material capable of improving the discharge characteristics and the capacity retention rate after cycles of lithium ion secondary batteries. Li1+x(FeyNizMn1-y-z)1-xO2??(1), where 0<x<?, 0?y, 0?z<0.5, and y+z<1.
    Type: Application
    Filed: June 5, 2014
    Publication date: May 5, 2016
    Applicant: NEC Corporation
    Inventors: Ryota YUGE, Kentaro NAKAHARA, Sadanori HATTORI
  • Patent number: 9287533
    Abstract: A non-aqueous secondary battery includes: a positive-electrode collector layer; a positive-electrode layer formed on one surface of the positive-electrode collector layer; a negative-electrode collector layer; a negative-electrode layer formed on one surface of the negative-electrode collector layer so as to be opposed to the positive-electrode layer; a separator provided between the positive-electrode layer and the negative-electrode layer; and a positive-electrode-side insulating layer and a negative-electrode-side insulating layer respectively formed on another surface of the positive-electrode collector layer and another surface of the negative-electrode collector layer. Circumferential inner surfaces of peripheral edges of the positive-electrode collector layer and the negative-electrode collector layer are joined with a sealing agent including at least a positive-electrode fusion layer, a gas barrier layer, and a negative-electrode fusion layer.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: March 15, 2016
    Assignee: NEC CORPORATION
    Inventors: Hiroshi Kajitani, Kentaro Nakahara, Takanori Nishi, Shigeyuki Iwasa, Haruyuki Yoshigahara, Yoichi Shimizu
  • Publication number: 20160028119
    Abstract: A lithium ion secondary battery comprising: a positive electrode comprising a positive electrode active material; a negative electrode comprised mainly of a material capable of storing and releasing lithium ions; and an electrolytic liquid, the positive electrode active material being a lithium-iron-manganese complex oxide having a layered rock salt structure and represented by a chemical formula: LixFesM1(z-s)M2yO2-? ?wherein 1.05?x?1.32, 0.06?s?0.50, 0.06?z?0.50, 0.33?y?0.63, and 0???0.
    Type: Application
    Filed: August 20, 2014
    Publication date: January 28, 2016
    Applicants: SEKISUI CHEMICAL CO., LTD., NEC CORPORATION
    Inventors: Masaru HEISHI, Takuya TOYOKAWA, Katsumi MAEDA, Noriyuki TAMURA, Kentaro NAKAHARA
  • Publication number: 20160006010
    Abstract: The present invention relates to a negative electrode for a lithium secondary battery containing a lithium sulfonate represented by a general formula (I) and provides a secondary battery that is excellent in a cycle characteristic and a storage characteristic under a high temperature environment: wherein R represents an n-valent aliphatic hydrocarbon group having 1 to 30 carbon atoms, an n-valent mononuclear aromatic group or an n-valent binuclear condensed aromatic group, and n represents 1 or 2.
    Type: Application
    Filed: January 16, 2014
    Publication date: January 7, 2016
    Applicant: NEC Corporation
    Inventors: Masahiro SUGURO, Midori SHIMURA, Noriyuki TAMURA, Kentaro NAKAHARA
  • Publication number: 20150194671
    Abstract: The present invention relates to a lithium-ion battery comprising a positive electrode containing, as a principal component, a lithium oxide having a layered rock-salt structure and represented by chemical formula: LixM1yM2zO2-d, wherein 1.16?x?1.32, 0.33?y?0.63, 0.06?z?0.50, M1 represents a metal ion selected from Mn, Ti and Zr, or a mixture thereof, and M2 represents a metal ion selected from Fe, Co, Ni and Mn, or a mixture thereof; and a negative electrode containing, as a principal component, a material capable of intercalating/deintercalating lithium ions, wherein peroxide ion(s) (O22?) are contained in the positive electrode.
    Type: Application
    Filed: February 1, 2013
    Publication date: July 9, 2015
    Applicant: NEC Corporation
    Inventors: Kentaro Nakahara, Sadanori Hattori
  • Patent number: 9012773
    Abstract: The present invention provides a compound useful as a photoelectric conversion dye having excellent photoelectric conversion performance. The compound according to the present invention is a thiazole-based compound represented by the following general formula (1), a tautomer or stereoisomer thereof, or a salt thereof. In the general formula (1), R1 represents a hydrogen atom, a substituted or unsubstituted, linear or branched alkyl group, or a substituted or unsubstituted aryl group, R2 represents a hydrogen atom, a substituted or unsubstituted, linear or branched alkyl group, or a cyano group, D represents an organic group comprising an electron-donating substituent, Z represents a linking group having a heteroaromatic ring or at least one hydrocarbon group selected from the group consisting of an aromatic ring, a vinylene group (—CH?CH—), or an ethynylene group (—C?C—), and M represents a hydrogen atom or a salt-forming cation.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 21, 2015
    Assignee: NEC Corporation
    Inventors: Katsumi Maeda, Shin Nakamura, Kentaro Nakahara, Terumasa Shimoyama
  • Patent number: 8933329
    Abstract: It is an object to provide a maleimide-based compound having excellent photoelectric conversion characteristics, and a tautomer or a stereoisomer thereof, a dye for photoelectric conversion, a semiconductor electrode, a photoelectric conversion element, and a photoelectrochemical cell. In order to accomplish the above-described objects, a dye for photoelectric conversion including at least one compound represented by the following general formula (1) is provided. (In the formula (1), R1 represents a direct bond, or a substituted or unsubstituted alkylene group. X represents an acidic group. D represents an organic group containing an electron-donating substituent. Z represents a linking group that has at least one hydrocarbon group selected from aromatic rings or heterocyclic rings).
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: January 13, 2015
    Assignee: NEC Corporation
    Inventors: Katsumi Maeda, Shin Nakamura, Kentaro Nakahara
  • Publication number: 20150010822
    Abstract: The present invention relates to a lithium-ion battery comprising a positive electrode containing, as a principal component, a lithium oxide having a layered rock-salt structure and represented by chemical formula: LixM1yM2zO2-d, wherein 1.16?x?1.32, 0.33?y?0.63, 0.06?z?0.50, M1 represents a metal ion selected from Mn, Ti and Zr, or a mixture thereof, and M2 represents a metal ion selected from Fe, Co, Ni and Mn, or a mixture thereof; and a negative electrode containing, as a principal component, a material capable of intercalating/deintercalating lithium ions, wherein an oxygen deficiency (d) of the positive electrode is not less than 0.05 and not more than 0.20.
    Type: Application
    Filed: February 1, 2013
    Publication date: January 8, 2015
    Inventors: Kentaro Nakahara, Sadanori Hattori
  • Patent number: 8895849
    Abstract: A photoelectric conversion element is provided which includes a semiconductor electrode (108) containing a semiconductor layer (103) and a dye, a counter electrode (109), and an electrolyte layer (104) disposed between the semiconductor electrode (108) and the counter electrode (109) and in which the dye contains a compound expressed by General Formula 1. (where A in General Formula 1 represents a substituted or unsubstituted aromatic group and may contain one or more atoms of oxygen, nitrogen, sulfur, silicon, phosphorus, boron, or halogen and the aromatic group may be obtained by condensing a plurality of aromatic groups).
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: November 25, 2014
    Assignee: NEC Corporation
    Inventors: Kentaro Nakahara, Kenji Kobayashi, Masahiro Suguro, Shin Nakamura
  • Patent number: 8728662
    Abstract: Disclosed is a polyradical compound which can be used as an electrode active material for at least one of a positive electrode and a negative electrode. The polyradical compound has a repeating unit represented by general formula (1) and is crosslinked using a bifunctional crosslinking agent having two polymerizing groups in the molecule represented by general formula (2), wherein R1 to R3 each independently represent hydrogen or methyl group; R4 to R7 each independently represent C1 to C3 alkyl group; X represents single bond, linear, branched or cyclic C1 to C15 alkylenedioxy group, alkylene group, phenylenedioxy group, phenylene group or structure represented by general formula (3); and R8 to R13 each independently represent hydrogen or methyl group, and k represents an integer of 2 to 5.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: May 20, 2014
    Assignee: NEC Corporation
    Inventors: Masahiro Suguro, Shigeyuki Iwasa, Yuki Kusachi, Jiro Iriyama, Yukiko Morioka, Kentaro Nakahara, Sadahiko Miura
  • Publication number: 20140087235
    Abstract: A layered structure includes a configuration in which non-aqueous secondary batteries are layered. Each non-aqueous secondary battery includes: a positive-electrode collector layer; a positive-electrode layer formed on one surface of the positive-electrode collector layer; a negative-electrode collector layer; a negative-electrode layer formed on one surface of the negative-electrode collector layer so as to be opposed to the positive-electrode layer; a separator containing an electrolytic solution provided between the positive-electrode layer and the negative-electrode layer; a positive-electrode-side insulating layer formed on another surface of the positive-electrode collector layer; and a negative-electrode-side insulating layer formed on another surface of the negative-electrode collector layer. Two non-aqueous secondary batteries share one negative-electrode-side insulating layer.
    Type: Application
    Filed: May 10, 2012
    Publication date: March 27, 2014
    Inventors: Hiroshi Kajitani, Kentaro Nakahara, Takanori Nishi, Shigeyuki Iwasa, Hiroshi Kato, Yoichi Shimizu, Haruyuki Yoshigahara
  • Publication number: 20140079984
    Abstract: A non-aqueous secondary battery includes: a positive-electrode collector layer; a positive-electrode layer formed on one surface of the positive-electrode collector layer; a negative-electrode collector layer; a negative-electrode layer formed on one surface of the negative-electrode collector layer so as to be opposed to the positive-electrode layer; a separator provided between the positive-electrode layer and the negative-electrode layer; and a positive-electrode-side insulating layer and a negative-electrode-side insulating layer respectively formed on another surface of the positive-electrode collector layer and another surface of the negative-electrode collector layer. Circumferential inner surfaces of peripheral edges of the positive-electrode collector layer and the negative-electrode collector layer are joined with a sealing agent including at least a positive-electrode fusion layer, a gas barrier layer, and a negative-electrode fusion layer.
    Type: Application
    Filed: May 10, 2012
    Publication date: March 20, 2014
    Inventors: Hiroshi Kajitani, Kentaro Nakahara, Takanori Nishi, Shigeyuki Iwasa, Haruyuki Yoshigahara, Yoichi Shimizu
  • Publication number: 20140061532
    Abstract: The present invention provides a radical composition capable of suppressing elution of electrode components in an electrolyte solution when used in an electrode for a secondary battery, and a battery using the radical composition. The present invention relates to a radical composition including a pyrroline nitroxide polymer and polyethylene glycols.
    Type: Application
    Filed: March 23, 2012
    Publication date: March 6, 2014
    Applicants: WASEDA UNIVERSITY, NEC CORPORATION, SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Sosuke Yamaguchi, Nobutaka Fujimoto, Yuji Kinpara, Shun Hashimoto, Shigeyuki Iwasa, Kentaro Nakahara
  • Publication number: 20140057167
    Abstract: A secondary battery using a polymer radical material and a conducting additive in which the performance of a conductive auxiliary layer is further improved and the internal resistance is reduced, thereby achieving a higher output. Specifically disclosed is a secondary battery in which at least one of a positive electrode and a negative electrode uses, as an electrode active material, a polymer radical material and a conducting additive having electrical conductivity. By providing a conductive auxiliary layer between a current collector and the polymer radical material/conducting additive electrode which is mainly composed of graphite, fibrous carbon or a granular carbon having a DBP absorption of not more than 110 cm3/100 g, the secondary battery with a higher output can be obtained.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicants: NEC CORPORATION, DIC CORPORATION
    Inventors: Masanori KASAI, Hiroshi Isozumi, Takayoshi Obata, Shigeyuki Iwasa, Kentaro Nakahara, Masahiro Suguro
  • Publication number: 20140038036
    Abstract: In a secondary battery utilizing redox by a radical site, charge-discharge is carried out in such a manner that a lithium ion moves between a positive electrode and a negative electrode (rocking chair-type). An anion in an amount necessary for electrode doping during charge-discharge is made unnecessary, thereby reducing the amount of an electrolytic solution. A secondary battery with a large energy density is achieved. Provided is an electrode active material including at least one polymer including a radical site capable of being converted into a first cation, and an anion site capable of being bonded with the first cation or a second cation.
    Type: Application
    Filed: January 23, 2012
    Publication date: February 6, 2014
    Applicants: WASEDA UNIVERSITY, NEC CORPORATION
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Hiroki Yakushiji, Shigeyuki Iwasa, Kentaro Nakahara