Patents by Inventor Kentei Yono

Kentei Yono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8373968
    Abstract: Dielectric ceramic composition includes a hexagonal type barium titanate as a main component shown by a generic formula (Ba1-?M?)A(Ti1-?Mn?)BO3 and having hexagonal structure wherein an effective ionic radius of 12-coordinated “M” is ?20% or more to +20% or less with respect to an effective ionic radius of 12-coordinated Ba2+ and the A, B, ? and ? satisfy relations of 0.900?(A/B)?1.040, 0.003???0.05, 0.03???0.2, and as subcomponents, with respect to the main component, certain contents of alkaline earth oxide such as MgO and the like, Mn3O4 and/or Cr2O3, CuO, Al2O3, rare earth element oxide and glass component including SiO2. According to the present invention, it can be provided the hexagonal type barium titanate powder and dielectric ceramic composition which are preferable for producing electronic components such as a capacitor and the like showing high specific permittivity, having advantageous insulation property and sufficient reliability.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: February 12, 2013
    Assignees: TDK Corporation, Japan Aerospace Exploration Agency
    Inventors: Tatsuya Ishii, Hidesada Natsui, Takeo Tsukada, Shinichi Yoda, Kentei Yono
  • Patent number: 8293668
    Abstract: Dielectric ceramic composition comprising a barium titanate including barium titanate having hexagonal structure as a main component, and an element “M”, an effective ionic radius of the “M” is within ±20% with respect to an effective ionic radius of 12-coordinated Ba2+ or with respect to an effective ionic radius of 6-coordinated Ti4+, an ionic valence of the “M” is larger than that of the Ba or Ti.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 23, 2012
    Assignees: Japan Aerospace Exploration Agency, TDK Corporation
    Inventors: Kentei Yono, Atsunobu Masuno, Shinichi Yoda, Hidesada Natsui
  • Patent number: 8028541
    Abstract: Disclosed is a method of producing a barium-titanium-based ferroelectric glass using a containerless solidification process, such as an electrostatic levitation process or a gas levitation process, which comprises the steps of levitating a sample 1 of a barium-titanium-based compound by a levitating force of compressed air, heating the sample up to a temperature greater than its melting point (1330° C.) by about 100° C. to allow the sample to be molten, and, after maintaining the molten state for a given time period (at least several second), quenching the sample from a given temperature range (1400 to 1000° C.) at a cooling rate of about 103 K/sec, so as to allow the sample to be solidified while inhibiting nucleation and mixing of impurities from a container. The present invention makes it possible to provide a glass exhibiting an unprecedented, extremely large permittivity.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: October 4, 2011
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Takehiko Ishikawa, Yasutomo Arai, Shinichi Yoda
  • Patent number: 8030232
    Abstract: A titanium-containing oxide glass having a bulky form and substantially having a chemical composition represented by the formula: (M1)1-x(M2)x(Ti1-y1(M3)y1)y2O2 [wherein M1 represents an element selected from Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na and Ca; M2 represents at least one element selected from Mg, Ba, Ca, Sr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Sc, Y, Hf, Bi and Ag; M3 represents at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Al, Si, P, Ga, Ge, In, Sn, Sb and Te; and x, y1, y2 and z satisfy the following requirements: 0?x?0.5, 0?y1<0.31, 1.4<y2<3.3, and 3.9<z<8.0, provided that x+y1?0 when M1 represents Ba, and y1?0 when both M1 and M2 represent Ba].
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: October 4, 2011
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Yasutomo Arai, Atsunobu Masuno, Takehiko Ishikawa, Shinichi Yoda
  • Publication number: 20110167870
    Abstract: A titanium-containing oxide glass having a bulky form and substantially having a chemical composition represented by the formula: (M1)1-x(M2)x(Ti1-y1(M3)y1)y2O2 [wherein M1 represents an element selected from Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na and Ca; M2 represents at least one element selected from Mg, Ba, Ca, Sr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Sc, Y, Hf, Bi and Ag; M3 represents at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Al, Si, P, Ga, Ge, In, Sn, Sb and Te; and x, y1, y2 and z satisfy the following requirements: 0?x?0.5, 0?y1<0.31, 1.4<y2<3.3, and 3.9<z<8.0, provided that x+y1?0 when M1 represents Ba, and y1?0 when both M1 and M2 represent Ba].
    Type: Application
    Filed: March 21, 2011
    Publication date: July 14, 2011
    Applicant: JAPAN AEROSPACE EXPLORATION AGENCY
    Inventors: Kentei YONO, Yasutomo ARAI, Atsunobu MASUNO, Takehiko ISHIKAWA, Shinichi YODA
  • Patent number: 7960300
    Abstract: A titanium-containing oxide glass having a bulky form and substantially having a chemical composition represented by the formula: (M1)1-x(M2)x(Ti1-y1(M3)y1)y2Oz [wherein M1 represents an element selected from Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na and Ca; M2 represents at least one element selected from Mg, Ba, Ca, Sr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Sc, Y, Hf, Bi and Ag; M3 represents at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Al, Si, P, Ga, Ge, In, Sn, Sb and Te; and x, y1, y2 and z satisfy the following requirements: 0?x?0.5, 0?y1<0.31, 1.4<y2<3.3, and 3.9<z<8.0, provided that x+y1?0 when M1 represents Ba, and y1?0 when both M1 and M2 represent Ba].
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: June 14, 2011
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Yasutomo Arai, Atsunobu Masuno, Takehiko Ishikawa, Shinichi Yoda
  • Publication number: 20110110018
    Abstract: Dielectric ceramic composition includes a hexagonal type barium titanate as a main component shown by a generic formula (Bai-?M?)A(Ti1-?Mn?)BO3 and having hexagonal structure wherein an effective ionic radius of 12-coordinated “M” is ?20% or more to +20% or less with respect to an effective ionic radius of 12-coordinated Ba2+ and the A, B, ? and ? satisfy relations of 0.900?(A/B)?1.040, 0.003???0.05, 0.03???0.2, and as subcomponents, with respect to the main component, certain contents of alkaline earth oxide such as MgO and the like, Mn3O4 and/or Cr2O3, CuO, Al2O3, rare earth element oxide and glass component including SiO2. According to the present invention, it can be provided the hexagonal type barium titanate powder and dielectric ceramic composition which are preferable for producing electronic components such as a capacitor and the like showing high specific permittivity, having advantageous insulation property and sufficient reliability.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 12, 2011
    Applicants: TDK CORPORATION, JAPAN AEROSPACE EXPLORATION AGENCY
    Inventors: Tatsuya ISHII, Hidesada NATSUI, Takeo TSUKADA, Shinichi YODA, Kentei YONO
  • Publication number: 20110111947
    Abstract: The disclosed is a dielectric ceramic composition in which dielectric particles 2a are formed. The dielectric particle 2a has a core 22a comprised of hexagonal barium titanate, and a shell 24a formed on an outer circumference of the core 22a and comprised of cubical or tetragonal barium titanate. The purpose of the present invention is to provide a new dielectric ceramic composition, in which permittivity is hardly lowered due to size effect, a good balance between high insulation resistance and permittivity can easily be achieved, and changes in insulation resistance and specific permittivity due to temperature are small; and an electronic component such as a multilayer ceramic capacitor using the dielectric ceramic composition as its dielectric layer.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 12, 2011
    Applicants: TDK CORPORATION, JAPAN AEROSPACE EXPLORATION AGENCY
    Inventors: Hidesada NATSUI, Tatsuya ISHII, Takeo TSUKADA, Shinichi YODA, Kentei YONO
  • Publication number: 20110059838
    Abstract: Dielectric ceramic composition comprising a barium titanate including barium titanate having hexagonal structure as a main component, and an element “M”, an effective ionic radius of the “M” is within ±20% with respect to an effective ionic radius of 12-coordinated Ba2+ or with respect to an effective ionic radius of 6-coordinated Ti4+, an ionic valence of the “M” is larger than that of the Ba or Ti.
    Type: Application
    Filed: May 15, 2008
    Publication date: March 10, 2011
    Applicants: JAPAN AEROSPACE EXPLORATION AGENCY, TDK CORPORATION
    Inventors: Kentei Yono, Atsunobu Masuno, Shinichi Yoda, Hidesada Natsui
  • Publication number: 20100022379
    Abstract: An optical element of the present invention exhibits at least one of an upconversion emission characteristic and a light amplifying characteristic when irradiated with an excitation light. The optical element includes a bulk glass that contains titanium oxide as a main component, and the glass further contains a rare earth element. As the rare earth element, at least one element of Er and Yb, or a combination of Yb and Tm preferably is used, for example.
    Type: Application
    Filed: January 31, 2008
    Publication date: January 28, 2010
    Applicants: JAPAN AEROSPACE EXPLORATION AGENCY, NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Shigeo Kittaka, Masahiro Tsuda, Kentei Yono, Atsunobu Masuno, Yasutomo Arai
  • Publication number: 20100003514
    Abstract: A titanium-containing oxide glass having a bulky form and substantially having a chemical composition represented by the formula: (M1)1-x(M2)x(Ti1-y1(M3)y1)y2Oz [wherein M1 represents an element selected from Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na and Ca; M2 represents at least one element selected from Mg, Ba, Ca, Sr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Sc, Y, Hf, Bi and Ag; M3 represents at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Al, Si, P, Ga, Ge, In, Sn, Sb and Te; and x, y1, y2 and z satisfy the following requirements: 0?x?0.5, 0?y1<0.31, 1.4<y2<3.3, and 3.9<z<8.0, provided that x+y1?0 when M1 represents Ba, and y1?0 when both M1 and M2 represent Ba].
    Type: Application
    Filed: September 13, 2007
    Publication date: January 7, 2010
    Applicant: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Yasutomo Arai, Atsunobu Masuno, Takehiko Ishikawa, Shinichi Yoda
  • Patent number: 7544245
    Abstract: Disclosed is a method for producing a barium titanium oxide single crystal piece with a given structure using a containerless solidification process, which comprises the steps of preparing a material made of a barium titanium oxide, controlling the material to be in a levitated state within a levitation furnace, melting the levitated material using a laser, and solidifying the molten material while maintaining the levitated state. In a specific embodiment, a spherical sample having a composition of BaTiO3 and a weight of about 20 mg is subjected to a rapid solidification and melting process (temperature gradient: about 700 K/sec) 3 times while levitating the sample in 4.5 atm of air atmosphere using an electrostatic levitation furnace. Then, the re-molten sample is maintained at a temperature just below the melting point of the sample for a given time, and then rapidly cooled at a cooling rate of 300 K/sec to obtain a transparent blue barium titanium oxide single crystal.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 9, 2009
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Paul-Francois Paradis, Takehiko Ishikawa, Shinichi Yoda
  • Publication number: 20060205095
    Abstract: Disclosed is a method of producing a barium-titanium-based ferroelectric glass using a containerless solidification process, such as an electrostatic levitation process or a gas levitation process, which comprises the steps of levitating a sample 1 of a barium-titanium-based compound by a levitating force of compressed air, heating the sample up to a temperature greater than its melting point (1330° C.) by about 100° C. to allow the sample to be molten, and, after maintaining the molten state for a given time period (at least several second), quenching the sample from a given temperature range (1400 to 1000° C.) at a cooling rate of about 103 K/sec, so as to allow the sample to be solidified while inhibiting nucleation and mixing of impurities from a container. The present invention makes it possible to provide a glass exhibiting an unprecedented, extremely large permittivity.
    Type: Application
    Filed: March 8, 2006
    Publication date: September 14, 2006
    Applicant: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Takehiko Ishikawa, Yasutomo Arai, Shinichi Yoda
  • Publication number: 20050199180
    Abstract: Disclosed is a method for producing a barium titanium oxide single crystal piece with a given structure using a containerless solidification process, which comprises the steps of preparing a material made of a barium titanium oxide, controlling the material to be in a levitated state within a levitation furnace, melting the levitated material using a laser, and solidifying the molten material while maintaining the levitated state. In a specific embodiment, a spherical sample having a composition of BaTiO3 and a weight of about 20 mg is subjected to a rapid solidification and melting process (temperature gradient: about 700 K/sec) 3 times while levitating the sample in 4.5 atm of air atmosphere using an electrostatic levitation furnace. Then, the re-molten sample is maintained at a temperature just below the melting point of the sample for a given time, and then rapidly cooled at a cooling rate of 300 K/sec to obtain a transparent blue barium titanium oxide single crystal.
    Type: Application
    Filed: January 28, 2005
    Publication date: September 15, 2005
    Applicant: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Paul-Francois Paradis, Takehiko Ishikawa, Shinichi Yoda