Patents by Inventor Kento ONISHI
Kento ONISHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240382529Abstract: Provided herein are methods, compositions of matter, and devices for treating neurological diseases and illnesses, including spinal cord injury.Type: ApplicationFiled: January 27, 2023Publication date: November 21, 2024Inventors: Gary HOGGE, Rami SKALITER, Jennifer BAHR-DAVIDSON, François BINETTE, Kento ONISHI, Nathan C. MANLEY, Craig R. HALBERSTADT, Erik M. WHITELY
-
Publication number: 20240082311Abstract: Provided herein are methods, compositions of matter, and devices for treating neurological diseases and illnesses, including spinal cord injury.Type: ApplicationFiled: January 28, 2022Publication date: March 14, 2024Inventors: Francois BINETTE, Jennifer BAHR-DAVIDSON, Rami SKALITER, Kento ONISHI, Nathan C. MANLEY, Craig R. HALBERSTADT, Erik M. WHITELEY
-
Publication number: 20230139899Abstract: Methods for differentiating human pluripotent stem cells to dorsal neuroectoderm progenitors and further to glial progenitor cells and oligodendrocyte progenitor cells (OPCs) using inhibitors of BMP signaling and MAPK/ERK signaling are provided. Also provided are cells and cellular compositions obtained by such methods, and uses of such cells. Further provided are methods and protocols for efficiently differentiating human pluripotent stem cells to OPCs in the absence of the ventralizing morphogen SHH or a SHH signaling activator. The methods of the present disclosure reproducibly produce dorsal neuroectoderm progenitor cells by day 7 of the differentiation process, glial progenitor cells by day 21 of the differentiation process and OPCs by day 42 of the differentiation process.Type: ApplicationFiled: December 2, 2022Publication date: May 4, 2023Inventors: Kento ONISHI, Nathan C. MANLEY, Craig R. HALBERSTADT, Erik M. WHITELEY
-
Patent number: 11603518Abstract: Methods for differentiating human pluripotent stem cells to dorsal neuroectoderm progenitors and further to glial progenitor cells and oligodendrocyte progenitor cells (OPCs) using inhibitors of BMP signaling and MAPK/ERK signaling are provided. Also provided are cells and cellular compositions obtained by such methods, and uses of such cells. Further provided are methods and protocols for efficiently differentiating human pluripotent stem cells to OPCs in the absence of the ventralizing morphogen SHH or a SHH signaling activator. The methods of the present disclosure reproducibly produce dorsal neuroectoderm progenitor cells by day 7 of the differentiation process, glial progenitor cells by day 21 of the differentiation process and OPCs by day 42 of the differentiation process.Type: GrantFiled: January 23, 2020Date of Patent: March 14, 2023Assignee: ASTERIAS BIOTHERAPEUTICS, INC.Inventors: Kento Onishi, Nathan C. Manley, Craig R. Halberstadt, Erik M. Whiteley
-
Patent number: 11149682Abstract: A structure of a combustion chamber for an engine includes a crown surface of a piston, a combustion chamber ceiling surface, an injector and an ignition plug provided on the combustion chamber ceiling surface, and an intake opening and an exhaust opening opened in the combustion chamber ceiling surface. A side where the intake opening is opened is defined as an intake port side, and a side where the exhaust opening is opened is defined as an exhaust port side. An ignition portion of the ignition plug is disposed on the intake port side. The ignition plug is ignited at a timing after the piston passes a compression top dead center. The injector is disposed on the center portion, and is configured to inject fuel toward the exhaust port side. A cavity is provided on the crown surface. A reverse squish flow generation portion is provided in the combustion chamber.Type: GrantFiled: May 22, 2018Date of Patent: October 19, 2021Assignee: MAZDA MOTOR CORPORATIONInventors: Satoshi Imamura, Masaki Fukuma, Yasushi Nakahara, Atsushi Inoue, Kota Matsumoto, Yoshiharu Ueki, Michiharu Kawano, Yuya Honda, Kento Onishi
-
Patent number: 11118499Abstract: A structure of a combustion chamber for an engine includes a crown surface of a piston, a combustion chamber ceiling surface formed on a cylinder head, an injector and an ignition plug provided on the combustion chamber ceiling surface, and an intake opening and an exhaust opening opened in the combustion chamber ceiling surface. A side where the intake opening is opened is defined as an intake port side, and a side where the exhaust opening is opened is defined as an exhaust port side, with respect to a position, as a reference, where an ignition portion of the ignition plug is disposed in a plan view from one side in a cylinder axis direction, the injector is configured to inject fuel toward the exhaust port side, and a reverse squish flow generation portion, which draws an air-fuel mixture toward the intake port side, is provided in the combustion chamber.Type: GrantFiled: May 22, 2018Date of Patent: September 14, 2021Assignee: MAZDA MOTOR CORPORATIONInventors: Satoshi Imamura, Masaki Fukuma, Yasushi Nakahara, Atsushi Inoue, Kota Matsumoto, Yoshiharu Ueki, Michiharu Kawano, Yuya Honda, Kento Onishi
-
Patent number: 11073102Abstract: A structure of a combustion chamber for an engine includes a crown surface of a piston, a cylinder wall surface, a combustion chamber ceiling surface, and an ignition plug which includes an ignition portion. The crown surface of the piston includes: a cavity recessed in the cylinder axis direction; a parallel surface portion which is in parallel to a corresponding region on the combustion chamber ceiling surface at a position above the cylinder axis direction with a gap, when the piston is at a compression top dead center; and an inclined surface portion formed to continue to the parallel surface portion in such a way as to be directed to the ignition plug, when the piston is at a compression top dead center. The parallel surface portion and the corresponding region, in combination, constitute a squish flow generation portion generating a squish flow when the piston is lifted.Type: GrantFiled: May 31, 2018Date of Patent: July 27, 2021Assignee: MAZDA MOTOR CORPORATIONInventors: Satoshi Imamura, Masaki Fukuma, Yasushi Nakahara, Atsushi Inoue, Kota Matsumoto, Yoshiharu Ueki, Michiharu Kawano, Yuya Honda, Kento Onishi
-
Patent number: 11041457Abstract: A structure of a combustion chamber for an engine includes: a crown surface of a piston; a combustion chamber ceiling surface formed on a cylinder head; and an ignition plug mounted on the combustion chamber ceiling surface, and including an ignition portion disposed in such a way as to face the combustion chamber. The crown surface of the piston includes a cavity which is recessed in a cylinder axis direction in a region including a position below the ignition portion of the ignition plug in a plan view from the cylinder axis direction. A rim portion of the cavity includes a guide portion, raised in the cylinder axis direction with respect to an inner region of the rim portion, interposing the ignition portion when the piston is at a compression top dead center, and configured to guide an air-fuel mixture within the combustion chamber to the ignition portion.Type: GrantFiled: May 31, 2018Date of Patent: June 22, 2021Assignee: MAZDA MOTOR CORPORATIONInventors: Satoshi Imamura, Masaki Fukuma, Yasushi Nakahara, Atsushi Inoue, Kota Matsumoto, Yoshiharu Ueki, Michiharu Kawano, Yuya Honda, Kento Onishi
-
Publication number: 20200378334Abstract: A structure of a combustion chamber for an engine includes: a crown surface of a piston; a combustion chamber ceiling surface formed on a cylinder head; and an ignition plug mounted on the combustion chamber ceiling surface, and including an ignition portion disposed in such a way as to face the combustion chamber. The crown surface of the piston includes a cavity which is recessed in a cylinder axis direction in a region including a position below the ignition portion of the ignition plug in a plan view from the cylinder axis direction. A rim portion of the cavity includes a guide portion, raised in the cylinder axis direction with respect to an inner region of the rim portion, interposing the ignition portion when the piston is at a compression top dead center, and configured to guide an air-fuel mixture within the combustion chamber to the ignition portion.Type: ApplicationFiled: May 31, 2018Publication date: December 3, 2020Applicant: MAZDA MOTOR CORPORATIONInventors: Satoshi IMAMURA, Masaki FUKUMA, Yasushi NAKAHARA, Atsushi INOUE, Kota MATSUMOTO, Yoshiharu UEKI, Michiharu KAWANO, Yuya HONDA, Kento ONISHI
-
Publication number: 20200378335Abstract: A structure of a combustion chamber for an engine includes a crown surface of a piston, a cylinder wall surface, a combustion chamber ceiling surface, and an ignition plug which includes an ignition portion. The crown surface of the piston includes: a cavity recessed in the cylinder axis direction; a parallel surface portion which is in parallel to a corresponding region on the combustion chamber ceiling surface at a position above the cylinder axis direction with a gap, when the piston is at a compression top dead center; and an inclined surface portion formed to continue to the parallel surface portion in such a way as to be directed to the ignition plug, when the piston is at a compression top dead center. The parallel surface portion and the corresponding region, in combination, constitute a squish flow generation portion generating a squish flow when the piston is lifted.Type: ApplicationFiled: May 31, 2018Publication date: December 3, 2020Applicant: MAZDA MOTOR CORPORATIONInventors: Satoshi IMAMURA, Masaki FUKUMA, Yasushi NAKAHARA, Atsushi INOUE, Kota MATSUMOTO, Yoshiharu UEKI, Michiharu KAWANO, Yuya HONDA, Kento ONISHI
-
Patent number: 10815872Abstract: In an engine (1), an ignition plug (22) is arranged between a first intake port (6) and a second intake port (7). In a case where a downstream end portion (71) of the second intake port (7) is divided into a first intake port (6) side and an opposite first intake port (6) side, an inner wall surface (71a) of an opposite first intake port (6) side portion extends in a direction toward the first intake port (6) as extending from an upstream side to a downstream side of the second intake port (7).Type: GrantFiled: March 3, 2017Date of Patent: October 27, 2020Assignee: MAZDA MOTOR CORPORATIONInventors: Yasushi Nakahara, Yohei Suzuki, Tsuyoshi Yamamoto, Michiharu Kawano, Yuya Honda, Kento Onishi
-
Patent number: 10767551Abstract: In an engine (1), when an intake valve (16) opens, a downstream end portion (61) of a first intake port (6) extends to direct to between a shade back (162a) positioned on a cylinder axis (C) side with respect to a valve stem (161) and a ceiling surface (51) facing the shade back (162a). As viewed in a section perpendicular to a direction perpendicular to an intake air flow direction, a second intake port side inner wall surface (61a) at the downstream end portion (61) of the first intake port (6) curves apart from a second intake port (7) in a direction from an exhaust side to an intake side as compared to the shape of an opposite second intake port side inner wall surface (61b) mirror-reversed to a second intake port (7) side.Type: GrantFiled: March 3, 2017Date of Patent: September 8, 2020Assignee: MAZDA MOTOR CORPORATIONInventors: Yasushi Nakahara, Yohei Suzuki, Tsuyoshi Yamamoto, Michiharu Kawano, Yuya Honda, Kento Onishi
-
Publication number: 20200231932Abstract: Methods for differentiating human pluripotent stem cells to dorsal neuroectoderm progenitors and further to glial progenitor cells and oligodendrocyte progenitor cells (OPCs) using inhibitors of BMP signaling and MAPK/ERK signaling are provided. Also provided are cells and cellular compositions obtained by such methods, and uses of such cells. Further provided are methods and protocols for efficiently differentiating human pluripotent stem cells to OPCs in the absence of the ventralizing morphogen SHH or a SHH signaling activator. The methods of the present disclosure reproducibly produce dorsal neuroectoderm progenitor cells by day 7 of the differentiation process, glial progenitor cells by day 21 of the differentiation process and OPCs by day 42 of the differentiation process.Type: ApplicationFiled: January 23, 2020Publication date: July 23, 2020Applicant: Asterias Biotherapeutics, Inc.Inventors: Kento Onishi, Nathan C. Manley, Craig R. Halberstadt, Erik M. Whiteley
-
Publication number: 20200166003Abstract: A structure of a combustion chamber for an engine includes a crown surface of a piston, a combustion chamber ceiling surface, an injector and an ignition plug provided on the combustion chamber ceiling surface, and an intake opening and an exhaust opening opened in the combustion chamber ceiling surface. A side where the intake opening is opened is defined as an intake port side, and a side where the exhaust opening is opened is defined as an exhaust port side. An ignition portion of the ignition plug is disposed on the intake port side. The ignition plug is ignited at a timing after the piston passes a compression top dead center. The injector is disposed on the center portion, and is configured to inject fuel toward the exhaust port side. A cavity is provided on the crown surface. A reverse squish flow generation portion is provided in the combustion chamber.Type: ApplicationFiled: May 22, 2018Publication date: May 28, 2020Applicant: MAZDA MOTOR CORPORATIONInventors: Satoshi IMAMURA, Masaki FUKUMA, Yasushi NAKAHARA, Atsushi INOUE, Kota MATSUMOTO, Yoshiharu UEKI, Michiharu KAWANO, Yuya HONDA, Kento ONISHI
-
Publication number: 20200141306Abstract: A structure of a combustion chamber for an engine includes a crown surface of a piston, a combustion chamber ceiling surface formed on a cylinder head, an injector and an ignition plug provided on the combustion chamber ceiling surface, and an intake opening and an exhaust opening opened in the combustion chamber ceiling surface. A side where the intake opening is opened is defined as an intake port side, and a side where the exhaust opening is opened is defined as an exhaust port side, with respect to a position, as a reference, where an ignition portion of the ignition plug is disposed in a plan view from one side in a cylinder axis direction, the injector is configured to inject fuel toward the exhaust port side, and a reverse squish flow generation portion, which draws an air-fuel mixture toward the intake port side, is provided in the combustion chamber.Type: ApplicationFiled: May 22, 2018Publication date: May 7, 2020Applicant: MAZDA MOTOR CORPORATIONInventors: Satoshi IMAMURA, Masaki FUKUMA, Yasushi NAKAHARA, Atsushi INOUE, Kota MATSUMOTO, Yoshiharu UEKI, Michiharu KAWANO, Yuya HONDA, Kento ONISHI
-
Publication number: 20190383207Abstract: In an engine (1), when an intake valve (16) opens, a downstream end portion (61) of a first intake port (6) extends to direct to between a shade back (162a) positioned on a cylinder axis (C) side with respect to a valve stem (161) and a ceiling surface (51) facing the shade back (162a). As viewed in a section perpendicular to a direction perpendicular to an intake air flow direction, a second intake port side inner wall surface (61a) at the downstream end portion (61) of the first intake port (6) curves apart from a second intake port (7) in a direction from an exhaust side to an intake side as compared to the shape of an opposite second intake port side inner wall surface (61b) mirror-reversed to a second intake port (7) side.Type: ApplicationFiled: March 3, 2017Publication date: December 19, 2019Applicant: MAZDA MOTOR CORPORATIONInventors: Yasushi NAKAHARA, Yohei SUZUKI, Tsuyoshi YAMAMOTO, Michiharu KAWANO, Yuya HONDA, Kento ONISHI
-
Publication number: 20190383208Abstract: In an engine (1), an ignition plug (22) is arranged between a first intake port (6) and a second intake port (7). In a case where a downstream end portion (71) of the second intake port (7) is divided into a first intake port (6) side and an opposite first intake port (6) side, an inner wall surface (71a) of an opposite first intake port (6) side portion extends in a direction toward the first intake port (6) as extending from an upstream side to a downstream side of the second intake port (7).Type: ApplicationFiled: March 3, 2017Publication date: December 19, 2019Applicant: MAZDA MOTOR CORPORATIONInventors: Yasushi NAKAHARA, Yohei SUZUKI, Tsuyoshi YAMAMOTO, Michiharu KAWANO, Yuya HONDA, Kento ONISHI