Patents by Inventor Kenzo Makino

Kenzo Makino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220349921
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a coil. The coil includes first and second tier parts opposed to each other in a first axis direction, with the magnetoresistive dal element interposed therebetween. The coil is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect element in a second axis direction. The first tier part includes first conductors extending in a third axis direction, arranged in the second axis direction and coupled in parallel to each other. The second tier part includes a second conductor or second conductors extending in the third axis direction, the second conductors being arranged in the second axis direction and coupled in parallel to each other. The first conductor each have a width smaller than a width of the second conductor or each of the second conductors.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Applicant: TDK CORPORATION
    Inventors: Takafumi KOBAYASHI, Norikazu OTA, Kenzo MAKINO
  • Patent number: 11467234
    Abstract: A magnetic sensor includes at least one MR element and a coil. The coil includes at least one conductor portion. The at least one conductor portion is each located at a position such that a partial magnetic field generated by the conductor portion is applied to one of the at least one MR element, the one corresponding to the conductor portion, and extends along an imaginary curve curving to protrude in a direction away from the corresponding MR element.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: October 11, 2022
    Assignee: TDK CORPORATION
    Inventors: Kenzo Makino, Norikazu Ota
  • Publication number: 20220317208
    Abstract: A magnetic sensor device includes a first chip including a first magnetic sensor, a second chip including a second magnetic sensor and a third magnetic sensor, and a support having a reference plane. The first magnetic sensor includes at least one first magnetic detection element, and detects a first component of an external magnetic field. The second magnetic sensor includes at least one second magnetic detection element, and detects a second component of the external magnetic field. The third magnetic sensor includes at least one third magnetic detection element, and detects a third component of the external magnetic field. The first chip and the second chip are mounted on the reference plane.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Applicant: TDK CORPORATION
    Inventors: Kenzo MAKINO, Shuhei MIYAZAKI
  • Publication number: 20220308095
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a conductor. The magnetoresistive effect element includes a magnetoresistive effect film extending in a first axis direction and including a first end part, a second end part, and an intermediate part between the first and second end parts. The conductor includes a first part and a second part that each extend in a second axis direction inclined with respect to the first axis direction. The conductor is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect film in a third axis direction orthogonal to the second axis direction. The first part and the second part respectively overlap the first end part and the second end part in a fourth axis direction orthogonal to both of the second axis direction and the third axis direction.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 29, 2022
    Applicant: TDK CORPORATION
    Inventors: Norikazu OTA, Kenzo MAKINO, Hiraku HIRABAYASHI
  • Patent number: 11435238
    Abstract: A temperature detection device includes: a detection processing unit configured to transmit a transmission radio wave, simultaneously receive a response radio wave corresponding to the transmission radio wave, and detect whether a temperature of an object to be measured is normal or abnormal based on the response radio wave; and a temperature sensing unit configured to receive the transmission radio wave and transmit the response radio wave responding to the transmission radio wave. The detection processing unit calculates, from the response radio wave received via a second antenna, an amplitude, a phase, or a quadrature phase amplitude of the response radio wave and compares the temperature of the object to be measured to a temperature determined in advance based on a result of the calculation.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: September 6, 2022
    Assignee: Mitsubishi Electric Cornoration
    Inventors: Kenzo Makino, Hideaki Arita, Masaya Inoue, Junji Hori, Hiroshi Araki, Yoshitsugu Sawa, Wataru Tsujita
  • Patent number: 11422166
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a coil. The coil includes first and second tier parts opposed to each other in a first axis direction, with the magnetoresistive effect element interposed therebetween. The coil is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect element in a second axis direction. The first tier part includes first conductors extending in a third axis direction, arranged in the second axis direction and coupled in parallel to each other. The second tier part includes a second conductor or second conductors extending in the third axis direction, the second conductors being arranged in the second axis direction and coupled in parallel to each other. The first conductors each have a width smaller than a width of the second conductor or each of the second conductors.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 23, 2022
    Assignee: TDK CORPORATION
    Inventors: Takafumi Kobayashi, Norikazu Ota, Kenzo Makino
  • Publication number: 20220236346
    Abstract: A magnetic sensor includes an MR element and a support member. The support member has an opposed surface including a first inclined portion, and a bottom surface. In a given cross section, the first inclined portion is inclined at a first angle at a first position, and inclined at a second angle smaller than the first angle at a second position. The absolute value of a curvature of the first inclined portion at the first position is less than the absolute value of the curvature of the first inclined portion at the second position. The MR element is provided on the first inclined portion so that the first edge is located above the first position in a given cross section.
    Type: Application
    Filed: January 13, 2022
    Publication date: July 28, 2022
    Applicant: TDK CORPORATION
    Inventors: Hirokazu TAKAHASHI, Kenzo MAKINO
  • Publication number: 20220229126
    Abstract: A magnetic sensor includes an MR element. The MR element includes a free layer. The free layer has a first surface having a shape that is long in one direction and a second surface located opposite the first surface, and has a thickness that is a dimension in a direction perpendicular to the first surface. The first surface has a first edge and a second edge located at both lateral ends of the first surface. In a given cross section, the thickness at the first edge is smaller than the thickness at a predetermined point on the first surface between the first edge and the second edge.
    Type: Application
    Filed: January 5, 2022
    Publication date: July 21, 2022
    Applicant: TDK CORPORATION
    Inventors: Hirokazu TAKAHASHI, Kenzo MAKINO
  • Patent number: 11385302
    Abstract: A magnet flux absorber of the present invention has a soft magnetic layer having a first surface and a second surface that is a back surface of the first surface, as well as and at least one magnetically pinning portion that faces a part of the first surface of the soft magnetic layer or a part of the second surface of the soft magnetic layer. A region of the soft magnetic layer that faces the magnetically pinning portion is magnetized by the magnetically pinning portion in a direction that is different from a direction in which at least a part of remaining region of the soft magnetic layer is magnetized.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: July 12, 2022
    Assignee: TDK Corporation
    Inventor: Kenzo Makino
  • Patent number: 11385303
    Abstract: A magnetic sensor device includes a conductor that constitutes a coil, and a detection circuit including a plurality of MR elements. The coil includes an upper coil portion. The upper coil portion includes a first conductor portion and a second conductor portion. An average cross-sectional area of the upper coil portion in the first conductor portion of the upper coil portion is smaller than that of the upper coil portion in the second conductor portion. The first conductor portion is located at a position where a first partial magnetic field occurring from the first conductor portion is applied to an MR element.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: July 12, 2022
    Assignee: TDK CORPORATION
    Inventors: Kenzo Makino, Takafumi Kobayashi, Hiroshi Yamazaki
  • Patent number: 11372029
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a conductor. The magnetoresistive effect element includes a magnetoresistive effect film extending in a first axis direction and including a first end part, a second end part, and an intermediate part between the first and second end parts. The conductor includes a first part and a second part that each extend in a second axis direction inclined with respect to the first axis direction. The conductor is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect film in a third axis direction orthogonal to the second axis direction. The first part and the second part respectively overlap the first end part and the second end part in a fourth axis direction orthogonal to both of the second axis direction and the third axis direction.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: June 28, 2022
    Assignee: TDK CORPORATION
    Inventors: Norikazu Ota, Kenzo Makino, Hiraku Hirabayashi
  • Publication number: 20220161804
    Abstract: Provided are a driver posture measurement device and a vehicle control device that can accurately measure the posture of a driver with a simple configuration without attaching a plurality of wireless communication units to a vehicle. The driver posture measurement device and the vehicle control device are configured such that, between one wireless communication unit provided on the vehicle side and one wireless communication unit provided on the driver side, radio waves are radiated from the wireless communication unit provided on the vehicle side, and on the basis of a radio wave arrival angle of the radio waves arriving at the wireless communication unit provided on the driver side, the driver posture is measured.
    Type: Application
    Filed: October 18, 2021
    Publication date: May 26, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tatsuo FUJIMOTO, Nobuyoshi TOMOMATSU, Taiga TANAKA, Tatsuji IRIE, Wataru TSUJITA, Junji HORI, Kenzo MAKINO
  • Patent number: 11249152
    Abstract: A magnetic field detection device includes a magnetism detection element, a modulator, and a demodulator. The magnetism detection element has a sensitivity axis along a first direction. The modulator is configured to impart a spin torque to the magnetism detection element. The spin torque has a rotational force and oscillates at a first frequency. The rotational force is exerted on a plane including the first direction and a second direction orthogonal to the first direction. The demodulator is configured to demodulate an output signal received from the magnetism detection element and to detect an intensity of a measurement target magnetic field exerted on the magnetism detection element on the basis of an amplitude of the output signal. The output signal has the first frequency.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: February 15, 2022
    Assignee: TDK CORPORATION
    Inventors: Kenzo Makino, Hiroshi Kiyono
  • Publication number: 20220026507
    Abstract: A magnetic sensor includes first to fourth resistor sections and a plurality of MR elements. Each of the plurality of MR elements belongs to any of first to fourth groups. The first to fourth groups are defined based on the areas of top surfaces of the MR elements. The first resistor section, the second resistor section, the third resistor section, and the fourth resistor section are constituted of the first group, the second group, the third group, and the fourth group, respectively; the second group, the first group, the fourth group, and the third group, respectively; the first group, the fourth group, the third group, and the second group, respectively; or the third group, the second group, the first group, and the fourth group, respectively.
    Type: Application
    Filed: June 28, 2021
    Publication date: January 27, 2022
    Applicant: TDK CORPORATION
    Inventor: Kenzo MAKINO
  • Patent number: 11215478
    Abstract: A magnetic sensor generates a detection signal that varies according to the strength of a target magnetic field at a detection position in a reference plane. The magnetic sensor includes a magnetoresistive element. The magnetoresistive element includes a magnetization pinned layer having a magnetization in a first direction, and a free layer having a magnetization whose direction is variable according to the direction of an acting magnetic field, the acting magnetic field being a composite magnetic field of all magnetic fields acting on the free layer. The free layer has uniaxial magnetic anisotropy such that an easy axis of magnetization is oriented in a direction parallel to a second direction. In the reference plane, both of two directions orthogonal to the second direction are different from the direction of the target magnetic field.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: January 4, 2022
    Assignee: TDK CORPORATION
    Inventors: Kenzo Makino, Tsuyoshi Umehara
  • Patent number: 11209504
    Abstract: A magneto-resistive effect element includes a magnetization free layer, an intermediate layer, and a magnetization pinned layer. The magnetization free layer extends along a first plane. The intermediate layer extends along the first plane, and is stacked on the magnetization free layer. The magnetization pinned layer extends along the first plane, and is provided on side opposite to the magnetization free layer with the intermediate layer being interposed therebetween. Here, the magnetization free layer includes an end surface that has a maximum inclination angle of 42° or less relative to the first plane.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: December 28, 2021
    Assignee: TDK CORPORATION
    Inventors: Kenzo Makino, Suguru Watanabe, Yasushi Nishioka, Hirokazu Takahashi
  • Patent number: 11169224
    Abstract: A magnetic field detection device includes a magnetic field detection element, a modulator, and a demodulator. The magnetic field detection element has a sensitivity axis in a first direction. The modulator is configured to apply, to the magnetic field detection element, a stress oscillating at a first frequency and including a component in a second direction, the second direction being orthogonal to the first direction. The demodulator is configured to demodulate an output signal having the first frequency and outputted from the magnetic field detection element, and detect, on a basis of an amplitude of the output signal, an intensity of a measurement magnetic field to be received by the magnetic field detection element.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: November 9, 2021
    Assignee: TDK CORPORATION
    Inventors: Kenzo Makino, Hiraku Hirabayashi
  • Publication number: 20210302511
    Abstract: A magnetic sensor includes an MR element and a support member. A top surface of the support member includes an inclined portion. The MR element includes an MR element main body, a lower electrode, and an upper electrode. The lower electrode includes a first end closest to a lower end of the inclined portion and a second end closest to an upper end of the inclined portion. The MR element main body is located at a position closer to the second end than to the first end.
    Type: Application
    Filed: December 22, 2020
    Publication date: September 30, 2021
    Applicant: TDK CORPORATION
    Inventors: Kenzo MAKINO, Takafumi KOBAYASHI
  • Publication number: 20210293902
    Abstract: A magnetic sensor device includes a conductor that constitutes a coil, and a detection circuit including a plurality of MR elements. The coil includes an upper coil portion. The upper coil portion includes a first conductor portion and a second conductor portion. An average cross-sectional area of the upper coil portion in the first conductor portion of the upper coil portion is smaller than that of the upper coil portion in the second conductor portion. The first conductor portion is located at a position where a first partial magnetic field occurring from the first conductor portion is applied to an MR element.
    Type: Application
    Filed: February 4, 2021
    Publication date: September 23, 2021
    Applicant: TDK CORPORATION
    Inventors: Kenzo MAKINO, Takafumi KOBAYASHI, Hiroshi YAMAZAKI
  • Publication number: 20210293857
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a coil. The coil includes first and second tier parts opposed to each other in a first axis direction, with the magnetoresistive effect element interposed therebetween. The coil is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect element in a second axis direction. The first tier part includes first conductors extending in a third axis direction, arranged in the second axis direction and coupled in parallel to each other. The second tier part includes a second conductor or second conductors extending in the third axis direction, the second conductors being arranged in the second axis direction and coupled in parallel to each other. The first conductors each have a width smaller than a width of the second conductor or each of the second conductors.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 23, 2021
    Applicant: TDK CORPORATION
    Inventors: Takafumi KOBAYASHI, Norikazu OTA, Kenzo MAKINO