Patents by Inventor Kenzo Oshihara

Kenzo Oshihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10573893
    Abstract: A method of making an electrode for a lithium ion battery includes providing a restricting media having a main body with opposing planar surfaces and depositing alloying particles on the opposing planar surfaces to form a restrained active particle layer. The restricting media can be a magnetic, electrochemically inactive material with an affinity for the alloying particles. The restricting media restrains expansion of the alloying particles during lithiation to a respective side of the restricting media. Electrodes include a current collector and an electrode material layer adjacent the current collector including the restricting media, the alloying particles deposited on the restricting media to form a restrained active particle layer, and a carbon material in contact with the alloying particles.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 25, 2020
    Assignee: Nissan North America, Inc.
    Inventors: Kenzo Oshihara, Xiaoguang Hao
  • Patent number: 10177371
    Abstract: Electrodes having at least one current correcting layer between the current collector and the separator drive electron flow in a direction perpendicular to the X-Y plane. Such an electrode includes a current collector, a first active material layer coated on the current collector, a first current correcting layer on the first active material layer opposite the current collector and a second active material layer on the first current correcting layer opposite the first active material layer. The first current correcting layer is a highly conductive, porous material that is not electrochemically active, the first current correcting layer being uniformly formed along an X-Y plane of the electrode.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: January 8, 2019
    Assignee: Nissan North America, Inc.
    Inventors: Xiaoguang Hao, Kenzo Oshihara
  • Patent number: 10054501
    Abstract: A stress detector for detecting an in-situ stress profile of an electrode has a liquid cell, a holder configured to attach to one end of a sample electrode so that the sample electrode is cantilevered in the liquid cell, a piezo sensor comprising a piezo material in the liquid cell and having a movable end configured to contact the sample electrode and a fixed end fixedly engaged within the liquid cell and a measurement sensor in contact with the piezo sensor.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: August 21, 2018
    Assignee: Nissan North America, Inc.
    Inventors: Ying Liu, Kenzo Oshihara
  • Patent number: 9866056
    Abstract: Provided are methods and apparatus for charging a lithium sulfur (Li—S) battery. The Li—S battery has at least one unit cell comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method provides controlled application of voltage pulses at the beginning of the charging process. An application period is initiated after a discharge cycle of the Li—S battery is complete. During the application period, voltage pulses are provided to the Li—S battery. The voltage pulses are less than a constant current charging voltage. Constant current charging is initiated after the application period has elapsed.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 9, 2018
    Assignee: Nissan North America, Inc.
    Inventors: Nagappan Ramaswamy, Peter Aurora, Gregory Dileo, Xiaoguang Hao, Taehee Han, Rameshwar Yadav, Ellazar Niangar, Kenzo Oshihara
  • Patent number: 9837653
    Abstract: Electrochemical cells for lithium-sulfur batteries include a cathode comprising a sulfur containing material, an anode comprising lithium, a separator between the anode and cathode and an interlayer extending from a perimeter of the separator in a direction perpendicular to a stacking direction. The interlayer is configured to prevent polysulfide migration from the cathode to the anode.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: December 5, 2017
    Assignee: Nissan North America, Inc.
    Inventors: Xiaoguang Hao, Kenzo Oshihara
  • Patent number: 9806337
    Abstract: An electrode comprises a current collector and a multi-layer active material formed on the current collector. The multi-layer active material includes at least one active composite unit having a first layer consisting essentially of a first carbon material having electrochemical activity and a binder and a second layer formed on the first layer comprising a high energy density material. A top layer is formed on the active composite unit consisting essentially of a second carbon material having electrochemical activity and a binder. The electrode provides even current distribution and compensates for particle volume expansion.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: October 31, 2017
    Assignee: Nissan North America, Inc.
    Inventors: Xiaoguang Hao, Kenzo Oshihara
  • Patent number: 9780362
    Abstract: Electrodes made with a matrix selectively loaded with particular active particles provide uniform distribution and reduce issues due to particle expansion. The electrode has a current collector, a separator and a matrix having first pores having a first size and second pores having a second size, the first size being larger than the second size, the second pores being uniformly distributed throughout the matrix; first active particles deposited in the first pores, the first active particles having a first particle size smaller than the first pores and larger than the second pores; and second active particles deposited in the second pores, the second active particles having a second particle size smaller than the second pores.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 3, 2017
    Assignee: Nissan North America, Inc.
    Inventors: Xiaoguang Hao, Jessica Weber, Kenzo Oshihara, Ying Liu
  • Publication number: 20170268940
    Abstract: A stress detector for detecting an in-situ stress profile of an electrode has a liquid cell, a holder configured to attach to one end of a sample electrode so that the sample electrode is cantilevered in the liquid cell, a piezo sensor comprising a piezo material in the liquid cell and having a movable end configured to contact the sample electrode and a fixed end fixedly engaged within the liquid cell and a measurement sensor in contact with the piezo sensor.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Ying Liu, Kenzo Oshihara
  • Publication number: 20170271654
    Abstract: A lithium ion battery has an anode comprising a current collector, a separator and an active material layer having active material particles. Each active material particle comprises a core of an alloying material including silicon and a polymer coating on the core, the polymer coating comprising a heat-shrinking polymer that shrinks as temperature increases. As cycling increases across a life of the lithium ion battery, an expansion amount of the alloying material of the core increases, temperature of the anode increases, and an amount of shrinkage of the polymer coating increases, such that as the core attempts to expand against the polymer coating, the polymer coating exerts an opposite force on the core.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Ying Liu, Kenzo Oshihara
  • Publication number: 20170194672
    Abstract: A method for preparing a lithium ion battery having improved discharge capacity retention in which, prior to using the lithium ion battery having at least one unit cell, a discharging current is applied to the unit cell in a manner such that the delithiation speed of alloying particles is greater than their volume contraction upon delithiation.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: JESSICA WEBER, KENZO OSHIHARA
  • Publication number: 20170194671
    Abstract: A method for preparing a lithium ion battery having improved discharge capacity retention in which, prior to using the lithium ion battery having at least one unit cell, a discharging current is applied to the unit cell in a manner such that the delithiation speed of alloying particles is greater than their volume contraction upon delithiation.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: JESSICA WEBER, KENZO OSHIHARA
  • Publication number: 20170179488
    Abstract: Electrodes incorporate an electrically activated matrix into which active material is provided. The active material includes alloying particles, which, as used herein, are active catalyst particles that have a high lithium storage capacity resulting in large volume expansions during lithiation. The electrically activated matrix is activated during charging and discharging of the battery, and when activated, maintains the electrode structure and stability by expanding and contracting with the volume expansion and contraction of the alloying particles during lithiation and delithiation, respectively. The electrically activated matrix also reduces cracking and pulverization of the alloying particles, maintaining electrical conductivity between active materials, thereby maintaining battery energy density through the life of the battery.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: XIAOGUANG HAO, KENZO OSHIHARA
  • Publication number: 20170179489
    Abstract: A method of making an electrode for a lithium ion battery includes providing a restricting media having a main body with opposing planar surfaces and depositing alloying particles on the opposing planar surfaces to form a restrained active particle layer. The restricting media can be a magnetic, electrochemically inactive material with an affinity for the alloying particles. The restricting media restrains expansion of the alloying particles during lithiation to a respective side of the restricting media.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: KENZO OSHIHARA, XIAOGUANG HAO
  • Publication number: 20170125797
    Abstract: Electrodes made with a matrix selectively loaded with particular active particles provide uniform distribution and reduce issues due to particle expansion. The electrode has a current collector, a separator and a matrix having first pores having a first size and second pores having a second size, the first size being larger than the second size, the second pores being uniformly distributed throughout the matrix; first active particles deposited in the first pores, the first active particles having a first particle size smaller than the first pores and larger than the second pores; and second active particles deposited in the second pores, the second active particles having a second particle size smaller than the second pores.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: XIAOGUANG HAO, JESSICA WEBER, KENZO OSHIHARA, YING LIU
  • Publication number: 20170125799
    Abstract: Electrodes having at least one current correcting layer between the current collector and the separator drive electron flow in a direction perpendicular to the X-Y plane. Such an electrode includes a current collector, a first active material layer coated on the current collector, a first current correcting layer on the first active material layer opposite the current collector and a second active material layer on the first current correcting layer opposite the first active material layer. The first current correcting layer is a highly conductive, porous material that is not electrochemically active, the first current correcting layer being uniformly formed along an X-Y plane of the electrode.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: XIAOGUANG HAO, KENZO OSHIHARA
  • Patent number: 9496065
    Abstract: A positive electrode active material is provided for an electric device that contains a first active material comprising a transition metal oxide represented by formula (1): Li1.5[NiaCobMnc[Li]d]O3 (where a, b, c, and d satisfy the relationships: 0<d<0.5; a+b+c+d=1.5; and 1.0<a+b+c<1.5); and a second active material comprising a spinel transition metal oxide that has a crystal structure assigned to the space group Fd-3m, represented by formula (2): LiMa?Mn2?a?O4 (where M indicates at least one metal element having an atomic valence of 2-4, and a? satisfies the relationship 0=a?<2.0). The fraction content of the first and second active material by mass ratio satisfies the relationship (3): 100:0 A:MB A indicates the mass of the first active material and MB indicates the mass of the second active material).
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 15, 2016
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Kenzo Oshihara, Tomohiro Kaburagi, Shinji Yamamoto
  • Patent number: 9461299
    Abstract: A transition metal oxide containing solid solution lithium contains a transition metal oxide containing lithium, which is represented by a chemical formula: Li1.5[NiaCobMnc[Li]d]O3 where 0<a<1.4; 0?b<1.4; 0<c<1.4; 0.1<d?0.4; a+b+c+d=1.5; and 1.1?a+b+c<1.4. The transition metal oxide containing lithium includes: a layered structure region; and a region changed to a spinel structure by being subjected to charge or charge/discharge in a predetermined potential range. When a ratio of an entire change from Li2MnO3 with a layered structure in a region to be changed to the spinel structure to LiMn2O4 with the spinel structure is defined to be 1, a spinel structure change ratio of the transition metal oxide containing lithium is 0.25 or more to less than 1.0.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: October 4, 2016
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Tomohiro Kaburagi, Shinji Yamamoto, Kenzo Oshihara
  • Publication number: 20160248067
    Abstract: Electrochemical cells for lithium-sulfur batteries include a cathode comprising a sulfur containing material, an anode comprising lithium, a separator between the anode and cathode and an interlayer extending from a perimeter of the separator in a direction perpendicular to a stacking direction. The interlayer is configured to prevent polysulfide migration from the cathode to the anode.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 25, 2016
    Inventors: Xiaoguang Hao, Kenzo Oshihara
  • Publication number: 20160218522
    Abstract: Provided are methods and apparatus for charging a lithium sulfur (Li—S) battery. The Li—S battery has at least one unit cell comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method provides controlled application of voltage pulses at the beginning of the charging process. An application period is initiated after a discharge cycle of the Li—S battery is complete. During the application period, voltage pulses are provided to the Li—S battery. The voltage pulses are less than a constant current charging voltage. Constant current charging is initiated after the application period has elapsed.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 28, 2016
    Inventors: Nagappan Ramaswamy, Peter Aurora, Gregory DiLeo, Xiaoguang Hao, Taehee Han, Rameshwar Yadav, Ellazar Niangar, Kenzo Oshihara
  • Publication number: 20160211524
    Abstract: An electrode comprises a current collector, a conductive buffer layer formed on the current collector consisting essentially of carbon and a binder, and an active material layer formed on the buffer layer. Another conductive buffer layer can be formed on an opposing side of the current collector, with the active material formed on this other buffer layer. The active material layer can be either an anode active material layer or a cathode active material layer.
    Type: Application
    Filed: January 15, 2015
    Publication date: July 21, 2016
    Inventors: XIAOGUANG HAO, KENZO OSHIHARA