Patents by Inventor Kerry A. Wilson

Kerry A. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190324050
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides. The technology still more particularly relates to automated devices for carrying out pipetting operations, particularly on samples in parallel, consistent with sample preparation and delivery of PCR-ready nucleotide extracts to a cartridge wherein PCR is run.
    Type: Application
    Filed: March 15, 2019
    Publication date: October 24, 2019
    Inventors: Jeff Williams, Kerry Wilson
  • Patent number: 10443098
    Abstract: Provided are compositions, methods and systems for determining the sequence of a template nucleic acid using a polymerase-based, sequencing-by-binding procedure. An examination step involves monitoring the interaction between a polymerase and template nucleic acid in the presence of one or more nucleotides. Identity of the next correct nucleotide in the sequence is determined without incorporation of any nucleotide into the structure of the primer by formation of a phosphodiester bond. An optional incorporation step can be used after the examination step to extend the primer by one or more nucleotides, thereby incrementing the template nucleotides that can be examined in a subsequent examination step. The sequencing-by-binding procedure does not require the use of labeled nucleotides or polymerases, but optionally can employ these reagents.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: October 15, 2019
    Assignee: OMNIOME, INC.
    Inventors: Kandaswamy Vijayan, Corey M. Dambacher, Eugene Tu, Mark A. Bernard, Joseph Rokicki, Kerry Wilson
  • Publication number: 20190144849
    Abstract: A rack for holding samples and various reagents, wherein the rack may be used for loading the samples and reagents prior to using the reagents. The rack accepts complementary reagent holders, each of which contain a set of reagents for carrying out a predetermined processing operation, such as preparing biological samples for amplifying and detecting polynucleotides extracted from the samples.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Patrick Duffy, Kerry Wilson, Kalyan Handique, Jeff Williams
  • Patent number: 10246744
    Abstract: Provided are compositions, methods and systems for determining the sequence of a template nucleic acid using a polymerase-based, sequencing-by-binding procedure. An examination step involves monitoring the interaction between a polymerase and template nucleic acid in the presence of one or more nucleotides. Identity of the next correct nucleotide in the sequence is determined without incorporation of any nucleotide into the structure of the primer by formation of a phosphodiester bond. An optional incorporation step can be used after the examination step to extend the primer by one or more nucleotides, thereby incrementing the template nucleotides that can be examined in a subsequent examination step. The sequencing-by-binding procedure does not require the use of labeled nucleotides or polymerases, but optionally can employ these reagents.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: April 2, 2019
    Assignee: OMNIOME, INC.
    Inventors: Kandaswamy Vijayan, Corey M. Dambacher, Eugene Tu, Mark A. Bernard, Joseph Rokicki, Kerry Wilson
  • Patent number: 10234474
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides. The technology still more particularly relates to automated devices for carrying out pipetting operations, particularly on samples in parallel, consistent with sample preparation and delivery of PCR-ready nucleotide extracts to a cartridge wherein PCR is run.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 19, 2019
    Assignee: HandyLab, Inc.
    Inventors: Jeff Williams, Kerry Wilson
  • Publication number: 20190054471
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides.
    Type: Application
    Filed: September 7, 2018
    Publication date: February 21, 2019
    Inventors: Jeff Williams, Kerry Wilson, Kalyan Handique
  • Patent number: 10179910
    Abstract: A rack for holding samples and various reagents, wherein the rack may be used for loading the samples and reagents prior to using the reagents. The rack accepts complementary reagent holders, each of which contain a set of reagents for carrying out a predetermined processing operation, such as preparing biological samples for amplifying and detecting polynucleotides extracted from the samples.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: January 15, 2019
    Assignee: HandyLab, Inc.
    Inventors: Patrick Duffy, Kerry Wilson, Kalyan Handique, Jeff Williams
  • Patent number: 10071376
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: September 11, 2018
    Assignee: HANDYLAB, INC.
    Inventors: Jeff Williams, Kerry Wilson, Kalyan Handique
  • Publication number: 20180187245
    Abstract: Method of identifying a cognate nucleotide (i.e., the “next correct nucleotide”) for a primed template nucleic acid molecule. In some embodiments, an ordered or random array of primed target nucleic acids characterized by different cognate nucleotides can be evaluated using a single imaging step to identify different cognate nucleotides for a collection of different primed template nucleic acid molecules. An optional incorporation step can follow the identifying step. A polymerase different from the ones used in the binding and examination steps can be used to incorporate a nucleotide, such as a reversible terminator nucleotide, preliminary to identification of the next cognate nucleotide.
    Type: Application
    Filed: December 21, 2017
    Publication date: July 5, 2018
    Applicant: Omniome, Inc.
    Inventors: Corey M. Dambacher, Devon Cayer, Richard LeCoultre, Joseph Rokicki, Kerry Wilson, Eugene Tu, Kandaswamy Vijayan
  • Publication number: 20180080073
    Abstract: Provided are compositions, methods and systems for determining the sequence of a template nucleic acid using a polymerase-based, sequencing-by-binding procedure. An examination step involves monitoring the interaction between a polymerase and template nucleic acid in the presence of one or more nucleotides. Identity of the next correct nucleotide in the sequence is determined without incorporation of any nucleotide into the structure of the primer by formation of a phosphodiester bond. An optional incorporation step can be used after the examination step to extend the primer by one or more nucleotides, thereby incrementing the template nucleotides that can be examined in a subsequent examination step. The sequencing-by-binding procedure does not require the use of labeled nucleotides or polymerases, but optionally can employ these reagents.
    Type: Application
    Filed: October 4, 2017
    Publication date: March 22, 2018
    Inventors: Kandaswamy VIJAYAN, Corey M. Dambacher, Eugene Tu, Mark A. Bernard, Joseph Rokicki, Kerry Wilson
  • Publication number: 20180044727
    Abstract: Provided are compositions, methods and systems for determining the sequence of a template nucleic acid using a polymerase-based, sequencing-by-binding procedure. An examination step involves monitoring the interaction between a polymerase and template nucleic acid in the presence of one or more nucleotides. Identity of the next correct nucleotide in the sequence is determined without incorporation of any nucleotide into the structure of the primer by formation of a phosphodiester bond. An optional incorporation step can be used after the examination step to extend the primer by one or more nucleotides, thereby incrementing the template nucleotides that can be examined in a subsequent examination step. The sequencing-by-binding procedure does not require the use of labeled nucleotides or polymerases, but optionally can employ these reagents.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 15, 2018
    Applicant: OMNIOME, INC.
    Inventors: Kandaswamy VIJAYAN, Corey M. DAMBACHER, Eugene TU, Mark A. BERNARD, Joseph ROKICKI, Kerry WILSON
  • Patent number: 9743788
    Abstract: What is provided is an apparatus for use in a decorative or edible arrangement, including a multiplicity of stem portions each having an upper end and a lower end, and holders each attached to the appropriate stem. Some holders comprise of spirally shaped receptacle mounted to the appropriate stems. The spirally shaped receptacle includes multiple coils surrounding a cavity. The coils have a hook attached at the end furthest from the elongated stem. The coils hold decorative or edible articles.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 29, 2017
    Inventor: Kerry Wilson
  • Patent number: 9701957
    Abstract: A holder for reagents, such as may be used for transporting the reagents and for carrying out processing operations on biological samples with the reagents. The holders typically hold reagents for amplifying polynucleotides extracted from the samples. The holder comprises a connecting member; a process tube affixed to the connecting member and having an aperture located in the connecting member; at least one socket, located in the connecting member, and configured to accept a pipette tip; two or more reagent tubes disposed on the underside of the connecting member, each having an inlet aperture located in the connecting member; and one or more receptacles, located in the connecting member and each being configured to receive a reagent tube. Also described are reagent tubes configured with stellated shaped patterns, on their bottom interior surfaces, configured to facilitate complete or near-complete withdrawal of fluid from the tube, via a pipette tip.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 11, 2017
    Assignee: HandyLab, Inc.
    Inventors: Kerry Wilson, Kalyan Handique, Sundaresh N. Brahmasandra, Jeff Williams
  • Publication number: 20170191125
    Abstract: Systems and methods for performing DNA sequencing. An example system includes a flow cell, a mechanism to generate fluid flow, a number of reservoirs for containing respective fluids, and a number valves configured such that fluid from any particular one of the plurality of reservoirs can be individually supplied to the flow cell under the impetus of the mechanism to generate fluid flow by opening of the respective valve of the particular reservoir and closing the other valves. Fluids containing test nucleotides may be sequentially flowed through the flow cell and the flow cell imaged at each step to detect binding of the test nucleotides to a sample. The nucleotide sequence of the sample is derived from the images. The sample may be arrayed on a sensing surface of a prism, and the images may be obtained, for example, by surface plasmon resonance imaging (SPRi) of the sensing surface or other techniques.
    Type: Application
    Filed: December 28, 2016
    Publication date: July 6, 2017
    Applicant: Omniome, Inc.
    Inventors: Kandaswamy Vijayan, Maxim Abashin, Yi Zhang, Espir Kahatt, Kerry Wilson
  • Publication number: 20170097373
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides. The technology still more particularly relates to automated devices for carrying out pipetting operations, particularly on samples in parallel, consistent with sample preparation and delivery of PCR-ready nucleotide extracts to a cartridge wherein PCR is run.
    Type: Application
    Filed: May 20, 2016
    Publication date: April 6, 2017
    Inventors: Jeff Williams, Kerry Wilson
  • Publication number: 20160333337
    Abstract: A rack for holding samples and various reagents, wherein the rack may be used for loading the samples and reagents prior to using the reagents. The rack accepts complementary reagent holders, each of which contain a set of reagents for carrying out a predetermined processing operation, such as preparing biological samples for amplifying and detecting polynucleotides extracted from the samples.
    Type: Application
    Filed: February 8, 2016
    Publication date: November 17, 2016
    Inventors: Patrick Duffy, Kerry Wilson, Kalyan Handique, Jeff Williams
  • Publication number: 20160250640
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides.
    Type: Application
    Filed: November 13, 2015
    Publication date: September 1, 2016
    Inventors: Jeff Williams, Kerry Wilson, Kalyan Handique
  • Patent number: 9347586
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides. The technology still more particularly relates to automated devices for carrying out pipetting operations, particularly on samples in parallel, consistent with sample preparation and delivery of PCR-ready nucleotide extracts to a cartridge wherein PCR is run.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: May 24, 2016
    Assignee: HandyLab, Inc.
    Inventors: Jeff Williams, Kerry Wilson
  • Patent number: 9259734
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 16, 2016
    Assignee: HandyLab, Inc.
    Inventors: Jeff Williams, Kalyan Handique, Kerry Wilson
  • Patent number: D787087
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: May 16, 2017
    Assignee: HandyLab, Inc.
    Inventors: Patrick Duffy, Kerry Wilson, Kalyan Handique, Jeff Williams