Patents by Inventor Kerry D. Meinhardt

Kerry D. Meinhardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7455700
    Abstract: A method for forming an anode supported electrochemical device, such as a SOFC, is disclosed. A thin layer of electrolyte 310 is supported on an anode layer comprised of an active anode layer 320 and a bulk anode layer 340. The bulk anode layer includes silicon carbide 340 in an amount between about 0.5 and 10% by weight. A cathode layer on an opposing side of the electrolyte completes the cell. The presence of the silicon carbide 340 in the supporting anode layer 340 has been found to reduce room temperature camber due to thermal expansion coefficient mismatches.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: November 25, 2008
    Assignee: Battelle Memorial Institute
    Inventors: Kerry D. Meinhardt, Steven P. Simner, Vincent L. Sprenkle
  • Publication number: 20080038611
    Abstract: An electrode supported electrolyte membrane includes an electrode layer 630 facing an electrolyte layer 620. The opposing side of the electrode layer 630 includes a backing layer 640 of a material with a thermal expansion coefficient approximately equal to the thermal expansion coefficient of the electrolyte layer 620. The backing layer 640 is in a two dimensional pattern that covers only a portion of the electrolyte layer 630. An electrochemical cell such as a SOFC is formed by providing a cathode layer 610 on an opposing side of the electrolyte layer 620.
    Type: Application
    Filed: April 28, 2003
    Publication date: February 14, 2008
    Inventors: Vincent L. Sprenkle, Nathan L. Canfield, Kerry D. Meinhardt, Jeffry W. Stevenson
  • Patent number: 7306872
    Abstract: A modular fuel cell cassette for use in assembling a fuel cell stack comprising a metal separator plate and a metal cell-mounting plate joined at their edges to form a hollow cassette. A fuel cell subassembly is attached to the mounting plate and extends through an opening in the mounting plate. The plates include openings to form chimney manifolds for supply and exhaust of fuel gas to the anode and air to the cathode. A conductive interconnect element extends from the fuel cell subassembly to make contact with the next cassette in a stack. The anode openings in the mounting plate and separator plate are separated by spacer rings such that the cassette is incompressible. A fuel cell stack comprises a plurality of cassettes, the mounting plate of one cassette being attached to, and insulated from, the separator plate of the next-adjacent cassette by a dielectric seal surrounding the interconnect.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: December 11, 2007
    Assignees: Delphi Technologies, Inc., Battelle Memorial Institute
    Inventors: Karl J. Haltiner, Jr., Subhasish Mukerjee, Lawrence A. Chick, Kerry D. Meinhardt, Dean M. Paxton, Vincent L. Sprenkle, K. Scott Weil, John E. Deibler, Paul E. George, II, Kurtis P. Recknagle
  • Patent number: 7244526
    Abstract: An anode supported electrochemical device, such as a SOFC, is disclosed. A thin layer of electrolyte 310 is supported on an anode layer comprised of an active anode layer 320 and a bulk anode layer 340. The bulk anode layer includes silicon carbide 340 in an amount between about 0.5 and 10% by weight. A cathode layer on an opposing side of the electrolyte completes the cell. The presence of the silicon carbide 340 in the supporting anode layer 340 has been found to reduce room temperature camber due to thermal expansion coefficient mismatches.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: July 17, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Kerry D. Meinhardt, Steven P. Simner, Vincent L. Sprenkle
  • Patent number: 7222406
    Abstract: Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: May 29, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Yeong-Shyung Chou, Kerry D. Meinhardt, Jeffry W. Stevenson
  • Publication number: 20040265666
    Abstract: A cassette for a SOFC stack formed by stamping a separator plate, stamping a frame, attaching a PEN cell to the frame, and attaching the frame to the separator plate. An insulating seal, preferably formed of glass, is provided between the PEN cell and the frame to provide electrical isolation between the frame and the separator plate. Electrical isolation is further provided by forming an insulating seal, preferably formed of glass, between the frame and the separator plate. A plurality of cassettes formed may be formed into a SOFC stack by sealing successive cassettes on top of one and another so that the anode side of each cassette is in electrical communication with the cathode side of each adjacent cassette, and forming an electrically isolated and gas tight seal between the frame of each cassette and the separator plate of each adjacent cassette.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Inventors: K. Scott Weil, Dean M. Paxton, Kerry D. Meinhardt
  • Publication number: 20030203267
    Abstract: Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
    Type: Application
    Filed: April 26, 2002
    Publication date: October 30, 2003
    Inventors: Yeong-Shyung Chou, Kerry D. Meinhardt, Jeffry W. Stevenson
  • Patent number: 6532769
    Abstract: The present invention is a glass-ceramic material and method of making useful for joining a solid ceramic component and at least one other solid component. The material is a blend of M1-M2-M3, wherein M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al2O3, present in the blend in an amount from 2 to 15 mol %, M3 is SiO2 with up to 50 mol % B2O3 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M1-Al2O3-M3 system can be used to join or seal both tubular and planar solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: March 18, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Kerry D. Meinhardt, John D. Vienna, Timothy R. Armstrong, Larry R. Pederson
  • Patent number: 6430966
    Abstract: The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of MAO—MBOy—SiO2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the MAO—MBOy—SiO2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: August 13, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Kerry D. Meinhardt, John D. Vienna, Timothy R. Armstrong, Larry R. Pederson