Patents by Inventor Kerry J. Vahala

Kerry J. Vahala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7206064
    Abstract: A laser Doppler velocimeter is formed using erbium-doped fiber as the lasing medium. The fiber is diode-pumped. By properly modulating the lasing in the fiber, pulses of radiation may be generated. A telescope acts as the transmission device to focus the radiation at a specified point, and may also act as the receiving system for reflected radiation. The portion of the reflected radiation collected by the receiving system is analyzed to determine the Doppler shift caused by aerosols or objects at the focal point of the telescope.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: April 17, 2007
    Assignee: Optical Air Data Systems, LLC
    Inventors: Philip L. Rogers, Kerry J. Vahala
  • Patent number: 7164825
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: January 16, 2007
    Assignee: Xponent Photonics Inc.
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 7158702
    Abstract: Discrete first and second optical transmission subunits are formed each having a corresponding transmission optical waveguide with a corresponding optical junction region. The first transmission optical waveguide is a planar optical waveguide formed on a substrate. The first transmission optical waveguide or the second transmission optical waveguide is adapted for enabling substantially adiabatic transverse-transfer of optical power between the optical waveguides at the respective optical junction regions. The first and second optical transmission subunits are assembled together to form an optical apparatus.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: January 2, 2007
    Assignee: Xponent Photonics Inc.
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 7130509
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: October 31, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 7106917
    Abstract: A resonant optical modulator comprises a transmission fiber-optic waveguide, a circumferential-mode optical resonator transverse-coupled thereto, a modulator optical component transverse-coupled to the circumferential-mode resonator, and a modulator control component. A control signal applied to the modulator optical component through the modulator control component alters the round-trip optical loss of the circumferential-mode resonator, thereby altering the transmission of a resonant optical signal through the transmission fiber-optic waveguide. The modulator optical element may comprise an open waveguide or a closed waveguide (i.e., resonator). The resonator round-trip optical loss may be altered by altering the optical absorption/scattering of the modulator optical component, by altering the amount of optical power transfer between the resonator and the modulator optical component, or by altering an optical resonance frequency of a resonant modulator optical component.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 12, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker
  • Patent number: 7068355
    Abstract: A laser Doppler velocimeter is formed using erbium-doped fiber as the lasing medium. The fiber is diode-pumped. By properly modulating the lasing in the fiber, pulses of radiation may be generated. A telescope acts as the transmission device to focus the radiation at a specified point, and may also act as the receiving system for reflected radiation. The portion of the reflected radiation collected by the receiving system is analyzed to determine the Doppler shift caused by aerosols or objects at the focal point of the telescope.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: June 27, 2006
    Assignee: Optical Air Data Systems, LP
    Inventors: Kerry J. Vahala, Philip L. Rogers
  • Patent number: 7050681
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: May 23, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 7031577
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: April 18, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 7003002
    Abstract: The present invention is a Raman laser and methods related thereto. In the preferred embodiments, the Raman laser comprises a laser pump signal in a fiber waveguide which is optically coupled to a micro-resonator through a fiber taper. The micro-resonator is constructed from a material that has a high Q when it is formed into a micro-resonator and is phase matched to the waveguide. The lasing frequency can be determined based upon the pump input or the micro-resonator material. In the preferred embodiments, the micro-resonator is constructed from a fused silica material. The present invention provides a compact laser with improved emissions and coupling efficiencies and the ability to use stimulated Raman scattering effects to create lasers having frequencies that are otherwise difficult to obtain. Alternative configurations include multiple micro-resonators on a single fiber waveguide and/or utilizing multiple waveguides attached to one or more micro-resonators.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: February 21, 2006
    Assignee: California Institute of Technology
    Inventors: Kerry J. Vahala, Sean M. Spillane, Tobias J. Kippenberg
  • Patent number: 6999671
    Abstract: A method for fabricating a multi-layer laterally-confined dispersion-engineered optical waveguide which may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: February 14, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 6987913
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: January 17, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 6959123
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: October 25, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 6907169
    Abstract: An optical signal may be received into orthogonal linearly polarized modes of a transmission optical waveguide, the transmission waveguide including first and second transverse-coupling segments thereof. Optical signal polarized along one polarization direction may be substantially completely transferred from the transmission waveguide into a first transverse-coupled waveguide, the first transverse-coupled waveguide being optically transverse-coupled to the first transverse-coupling segment of the transmission waveguide. Optical signal polarized along the other polarization direction may be substantially completely transferred from the transmission waveguide into a second transverse-coupled waveguide, the second transverse-coupled waveguide being optically transverse-coupled to the second transverse-coupling segment of the transmission waveguide. The optical signals carried by the first and second transverse-coupled waveguides may be combined into a single waveguide.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: June 14, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Kerry J. Vahala, Peter C. Sercel, Oskar J. Painter, David W. Vernooy, David S. Alavi
  • Patent number: 6891996
    Abstract: An alignment device includes an alignment member with one or more waveguide-alignment grooves, resonator alignment grooves, and/or an alignment groove for a second optical element such as a modulator. The various alignment grooves reliably establish and stably maintain evanescent optical coupling between the optical elements positioned therein. A method for assembling a resonant optical power control device may include: fabricating an alignment member with the alignment grooves; positioning and securing the optical elements in corresponding alignment grooves for optical coupling therebetween. Alignment grooves in the substrate and/or in one or more of the optical elements are fabricated at proper depths and positions and preferably with mating grooves and/or flanges to enable optical coupling without extensive active alignment procedures.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 10, 2005
    Assignee: Xponent Photonics Inc.
    Inventors: Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker, Robert B. Lee, Oskar J. Painter
  • Patent number: 6891864
    Abstract: The present invention is a Raman laser and methods related thereto. In the preferred embodiments, the Raman laser comprises a laser pump signal in a fiber waveguide which is optically coupled to a micro-resonator through a fiber taper. The micro-resonator is constructed from a material that has a high Q when it is formed into a micro-resonator and is phase matched to the waveguide. The lasing frequency can be determined based upon the pump input or the micro-resonator material. In the preferred embodiments, the micro-resonator is constructed from a fused silica material. The present invention provides a compact laser with improved emissions and coupling efficiencies and the ability to use stimulated Raman scattering effects to create lasers having frequencies that are otherwise difficult to obtain. Alternative configurations include multiple micro-resonators on a single fiber waveguide and/or utilizing multiple waveguides attached to one or more micro-resonators.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: May 10, 2005
    Assignee: California Institute of Technology
    Inventors: Kerry J. Vahala, Sean M. Spillane, Tobias J. Kippenberg
  • Patent number: 6891997
    Abstract: A fiber-ring optical resonator comprises a transverse segment of an optical fiber differing from adjacent segments in at least one physical property (e.g., diameter, density, refractive index, chemical composition, etc) so that it may support a resonant circumferential optical mode and enable evanescent optical coupling between the circumferential mode and an optical mode of a second optical element. The resonator may be fabricated with alignment structure(s) for enabling passive alignment of the second optical element for evanescent coupling, and/or with structure for suppressing undesired modes and/or resonances. A fiber-ring resonator may form a portion of a resonant optical filter or modulator. A plurality of optically-coupled fiber-ring resonators (formed on one or more fibers) may provide tailored spectral properties.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 10, 2005
    Assignee: Xponent Photonics Inc.
    Inventors: Peter C. Sercel, Kerry J. Vahala, Guido Hunziker, David W. Vernooy, Robert B. Lee
  • Patent number: 6888987
    Abstract: A method for cylindrical processing of an optical medium, including optical fiber and optical materials of substantially cylindrical form. The method of the preferred embodiments includes the steps of rotating an optical medium about a longitudinal relative rotation axis thereof relative to a processing tool; spatially selectively applying the processing tool to a portion of a surface of the optical medium in operative cooperation with relative rotation of the optical medium and the processing tool, thereby producing a patterned (i.e., spatially selective) structural alteration of the optical medium, the pattern including altered, differentially-altered and unaltered portions of the optical medium. Specialized techniques for spatially selectively generating the structural alteration may include masking/etching, masking/deposition, machining or patterning with lasers or beams, combinations thereof, and/or functional equivalents thereof.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 3, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker
  • Patent number: 6865317
    Abstract: A resonant optical filter includes first and second transmission waveguides and a resonator (including one or more evanescently coupled resonator segments). The resonator supports at least one circumferential resonant mode and is evanescently coupled to the waveguides. An optical signal entering the filter through a waveguide and substantially resonant with the resonator is transferred to the other waveguide, while an optical signal entering the filter and substantially non-resonant with the resonator remains in the same waveguide. Multiple resonator segments may be formed on a common resonator fiber and positioned for enabling coupling between them, resulting in a tailored frequency filter function. The resonators may include alignment structure(s) (flanges, grooves, etc) for enabling passive positioning and/or supporting first and second transmission waveguides, such as optical fiber tapers.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: March 8, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Kerry J. Vahala, Peter C. Sercel, David W. Vernooy, Oskar J. Painter, Guido Hunziker
  • Patent number: 6859582
    Abstract: A hybrid and tapered waveguide coupler that has two different single-mode waveguide sections for light at two different wavelengths to couple light at the two different wavelengths into or out of an optical device located in a reach of an evanescent field of the guided optical energy in the waveguide coupler.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 22, 2005
    Assignee: California Institute of Technology
    Inventors: Ming Cai, Kerry J. Vahala
  • Patent number: 6839491
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 4, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala