Patents by Inventor Kerry Joseph Nagel

Kerry Joseph Nagel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9722174
    Abstract: By manufacturing magnetoresistive devices using low-k dielectric materials as the inter-layer dielectrics and higher-k dielectric materials for hard masks and encapsulation, the overall dielectric constant characteristics of the magnetoresistive devices can be kept lower, thereby decreasing capacitance and allowing for higher speed operations. Elimination or reduction of residual higher-k dielectric material through stripping or other processes minimizes “islands” of higher-k dielectric material that can detract from overall dielectric constant performance. One or more masking and one or more etching steps can be used to form the devices either with or without the additional stripping of the higher-k material.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: August 1, 2017
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal
  • Patent number: 9711566
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Grant
    Filed: August 6, 2016
    Date of Patent: July 18, 2017
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Thomas Andre, Sanjeev Aggarwal, Kerry Joseph Nagel, Sarin A. Deshpande
  • Publication number: 20170125663
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer; depositing a first encapsulation layer on the sidewalls of the second magnetic region and over the dielectric layer; etching the first encapsulation layer which is disposed over the exposed surface of the dielectric layer. The method further includes (a) depositing a second encapsulation layer: (i) on the first encapsulation layer disposed on the sidewalls of the second magnetic region and (ii) over the exposed surface of the dielectric layer and (b) depositing a third encapsulation layer: (i) on the second encapsulation layer which is on the first encapsulation layer and the exposed surface of the dielectric layer. The method also includes etching the remaining layers of the stack/structure (via one or more etch processes).
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: Kerry Joseph Nagel, Wenchin Lin, Sarin A. Deshpande, Jijun Sun, Sanjeev Aggarwal, Chaitanya Mudivarthi
  • Publication number: 20170117462
    Abstract: A method of manufacturing one or more interconnects to magnetoresistive structure comprising (i) depositing a first conductive material in a via; (2) etching the first conductive material wherein, after etching the first conductive material a portion of the first conductive material remains in the via, (3) partially filling the via by depositing a second conductive material in the via and directly on the first conductive material in the via; (4) depositing a first electrode material in the via and directly on the second conductive material in the via; (5) polishing a first surface of the first electrode material wherein, after polishing, the first electrode material is (i) on the second conductive material in the via and (ii) over the portion of the first conductive material remaining in the via; and (6) forming a magnetoresistive structure over the first electrode material.
    Type: Application
    Filed: January 6, 2017
    Publication date: April 27, 2017
    Inventors: Kerry Joseph Nagel, Kenneth Smith, Moazzem Hossain, Sanjeev Aggarwal
  • Patent number: 9595665
    Abstract: In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: March 14, 2017
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Kerry Joseph Nagel, Chaitanya Mudivarthi, Nicholas Rizzo, Jason Allen Janesky
  • Patent number: 9553260
    Abstract: A conductive via disposed beneath a magnetic device and aligned therewith. In certain embodiments, an electrode formed on the conductive via may be polished to eliminate step functions or seams originating at the conductive via from propagating up through the various deposited layers. This integration approach allows for improved scaling of the MRAM devices to, for example, a 45 nanometer node.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: January 24, 2017
    Assignee: Everspin Technologies, Inc.
    Inventors: Kerry Joseph Nagel, Kenneth Smith, Moazzem Hossain, Sanjeev Aggarwal
  • Publication number: 20160372517
    Abstract: A layer of silicon nitride above the bottom electrode and on the sidewalls of the magnetoresistive stack serves as an insulator and an etch stop during manufacturing of a magnetoresistive device. Non-selective chemical mechanical polishing removes any silicon nitride overlying a top electrode for the device along with silicon dioxide used for encapsulation. Later etching operations corresponding to formation of a via to reach the top electrode use selective etching chemistries that remove silicon dioxide to access the top electrode, but do not remove silicon nitride. Thus, the silicon nitride acts as an etch stop, and, in the resulting device, provides an insulating layer that prevents unwanted short circuits between the via and the bottom electrode and between the via and the sidewalls of the magnetoresistive device stack.
    Type: Application
    Filed: August 29, 2016
    Publication date: December 22, 2016
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Moazzem Hossain, Nicholas Rizzo
  • Publication number: 20160315253
    Abstract: In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
    Type: Application
    Filed: May 5, 2016
    Publication date: October 27, 2016
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Kerry Joseph Nagel, Chaitanya Mudivarthi, Nicholas Rizzo, Jason Allen Janesky
  • Patent number: 9466788
    Abstract: A two-step etching process is used to form the top electrode for a magnetoresistive device. The etching chemistries are different for each of the two etching steps. The first chemistry used to etch the top portion of the electrode is more selective with respect to the conductive material of the top electrode, thereby reducing unwanted erosion of the photoresist and hard mask layers. The second chemistry is less corrosive than the first chemistry and does not damage the layers underlying the top electrode, such as those included in the magnetic tunnel junction.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: October 11, 2016
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Kerry Joseph Nagel
  • Patent number: 9431602
    Abstract: A layer of silicon nitride above the bottom electrode and on the sidewalls of the magnetoresistive stack serves as an insulator and an etch stop during manufacturing of a magnetoresistive device. Non-selective chemical mechanical polishing removes any silicon nitride overlying a top electrode for the device along with silicon dioxide used for encapsulation. Later etching operations corresponding to formation of a via to reach the top electrode use selective etching chemistries that remove silicon dioxide to access the top electrode, but do not remove silicon nitride. Thus, the silicon nitride acts as an etch stop, and, in the resulting device, provides an insulating layer that prevents unwanted short circuits between the via and the bottom electrode and between the via and the sidewalls of the magnetoresistive device stack.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: August 30, 2016
    Assignee: Everspin Technologies, Inc.
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Moazzem Hossain, Nicholas Rizzo
  • Patent number: 9412786
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 9, 2016
    Assignee: Everspin Technologies, Inc.
    Inventors: Thomas Andre, Sanjeev Aggarwal, Kerry Joseph Nagel, Sarin A. Deshpande
  • Publication number: 20160225981
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer; depositing a first encapsulation layer on the sidewalls of the second magnetic region and over the dielectric layer; etching (i) the first encapsulation layer which is disposed over the exposed surface of the dielectric layer and (ii) re-deposited material disposed on the dielectric layer, wherein, thereafter a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region. The method further includes depositing a second encapsulation layer: (i) on the first encapsulation layer disposed on the sidewalls of the second magnetic region and (ii) over the exposed surface of the dielectric layer; and etching the remaining layers of the stack/structure (via one or more etch processes).
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Sarin A. Deshpande, Kerry Joseph Nagel, Chaitanya Mudivarthi, Sanjeev Aggarwal
  • Patent number: 9343661
    Abstract: In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 17, 2016
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Kerry Joseph Nagel, Sanjeev Aggarwal, Chaitanya Mudivarthi
  • Publication number: 20150357559
    Abstract: A layer of silicon nitride above the bottom electrode and on the sidewalls of the magnetoresistive stack serves as an insulator and an etch stop during manufacturing of a magnetoresistive device. Non-selective chemical mechanical polishing removes any silicon nitride overlying a top electrode for the device along with silicon dioxide used for encapsulation. Later etching operations corresponding to formation of a via to reach the top electrode use selective etching chemistries that remove silicon dioxide to access the top electrode, but do not remove silicon nitride. Thus, the silicon nitride acts as an etch stop, and, in the resulting device, provides an insulating layer that prevents unwanted short circuits between the via and the bottom electrode and between the via and the sidewalls of the magnetoresistive device stack.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 10, 2015
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Moazzem Hossain, Nicholas Rizzo
  • Publication number: 20150236254
    Abstract: A conductive via disposed beneath a magnetic device and aligned therewith. In certain embodiments, an electrode formed on the conductive via may be polished to eliminate step functions or seams originating at the conductive via from propagating up through the various deposited layers. This integration approach allows for improved scaling of the MRAM devices to, for example, a 45 nanometer node.
    Type: Application
    Filed: May 5, 2015
    Publication date: August 20, 2015
    Inventors: Kerry Joseph Nagel, Kenneth Smith, Moazzem Hossain, Sanjeev Aggarwal
  • Publication number: 20150236249
    Abstract: In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
    Type: Application
    Filed: June 4, 2014
    Publication date: August 20, 2015
    Inventors: Sarin A. Deshpande, Kerry Joseph Nagel, Sanjeev Aggarwal, Chaitanya Mudivarthi
  • Publication number: 20150236250
    Abstract: A two-step etching process is used to form the top electrode for a magnetoresistive device. The etching chemistries are different for each of the two etching steps. The first chemistry used to etch the top portion of the electrode is more selective with respect to the conductive material of the top electrode, thereby reducing unwanted erosion of the photoresist and hard mask layers. The second chemistry is less corrosive than the first chemistry and does not damage the layers underlying the top electrode, such as those included in the magnetic tunnel junction.
    Type: Application
    Filed: September 22, 2014
    Publication date: August 20, 2015
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Kerry Joseph Nagel
  • Publication number: 20150236248
    Abstract: A two-step etching process is used to form the top electrode for a magnetoresistive device. The level of isotropy is different for each of the two etching steps, thereby providing advantages associated with isotropic etching as well as more anisotropic etching. The level of isotropy is controlled by varying power and pressure during plasma etching operations.
    Type: Application
    Filed: June 4, 2014
    Publication date: August 20, 2015
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Kerry Joseph Nagel, Nicholas Rizzo, Jason Allen Janesky