Patents by Inventor Kerry Vahala

Kerry Vahala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8818146
    Abstract: A method of manufacturing a waveguide eliminates a prior art reflow step and introduces certain new steps that permit fabricating of an ultra-low loss waveguide element on a silicon chip. The ultra-low loss waveguide element may be adapted to fabricate a number of devices, including a wedge resonator and a ultra-low loss optical delay line having an extended waveguide length.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: August 26, 2014
    Assignee: California Institute of Technology
    Inventors: Kerry Vahala, Hansuek Lee, Tong Chen, Jiang Li
  • Publication number: 20140192830
    Abstract: There is discussed an optical system comprising a laser device that outputs a divergent light beam. A first portion of the divergent light beam, including a central portion, passes through an etalon device, which acts as a wavelength discriminator, and then the central portion is incident on a first monitor photodiode, which generates a wavelength-dependent detection signal. A second portion of the divergent light beam is incident on a second monitor photodetector, without passing through the etalon device, to generate a wavelength-independent detection signal. A processor processes the wavelength-dependent detection signal and the wavelength-independent detection signal to determine a control signal for controlling the wavelength of the laser device. By accurately positioning a photodetector at the central fringe of the divergent light beam following transmission through the etalon device, a compact and cost-effective wavelength locking arrangement is provided.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: Emcore Corporation
    Inventors: Henry A. Blauvelt, Kerry Vahala
  • Publication number: 20120321245
    Abstract: A method of manufacturing a waveguide eliminates a prior art reflow step and introduces certain new steps that permit fabricating of an ultra-low loss waveguide element on a silicon chip. The ultra-low loss waveguide element may be adapted to fabricate a number of devices, including a wedge resonator and a ultra-low loss optical delay line having an extended waveguide length.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 20, 2012
    Inventors: Kerry VAHALA, Hansuek LEE, Tong CHEN, Jiang LI
  • Publication number: 20120320448
    Abstract: A frequency comb generator fabricated on a chip with elimination of a disadvantageous reflow process, includes an ultra-high Q disk resonator having a waveguide that is a part of a wedge structure fabricated from a silicon dioxide layer of the chip. The disk resonator allows generation of a frequency comb with a mode spacing as low as 2.6 GHz and up to 220 GHz. A surface-loss-limited behavior of the disk resonator decouples a strong dependence of pumping threshold on repetition rate.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Inventors: Jiang LI, Hansuek LEE, Tong CHEN, Kerry VAHALA
  • Patent number: 8045834
    Abstract: True time delay silica waveguides and related fabrication methods are disclosed. Also disclosed are true time delay silica waveguides comprising wedged silica structures.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 25, 2011
    Assignee: California Institute of Technology
    Inventors: Oskar Painter, Kerry Vahala
  • Publication number: 20090285542
    Abstract: True time delay silica waveguides and related fabrication methods are disclosed. Also disclosed are true time delay silica waveguides comprising wedged silica structures.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 19, 2009
    Inventors: Andrea MARTIN ARMANI, Oskar PAINTER, Kerry VAHALA
  • Publication number: 20070269901
    Abstract: Resonant sensors and methods of detecting specific molecules with enhanced sensitivity. Optical energy is introduced into a microcavity, such as a silica toroid-shaped microcavity. The microcavity sensor has a functionalized outer surface and a sufficiently high Q value to generate an evanescent optical field with increased intensity. A molecule bound to the functionalized outer surface interacts with the external optical field, thereby heating the microcavity and generating a detectable resonant wavelength shift, which indicates a small number of molecules, even a single molecule, without the use of fluorescent or metal labels. Resonant sensors and methods can also be used to detect specific molecules, even a single molecule, within an environment. One application is detecting very small quantities or a single molecule of heavy water in ordinary water.
    Type: Application
    Filed: April 10, 2007
    Publication date: November 22, 2007
    Inventors: Andrea Armani, Rajan Kulkarni, Scott Fraser, Kerry Vahala
  • Publication number: 20070211989
    Abstract: Discrete first and second optical transmission subunits are formed each having a corresponding transmission optical waveguide with a corresponding optical junction region. The first transmission optical waveguide is a planar optical waveguide formed on a substrate. The first transmission optical waveguide or the second transmission optical waveguide is adapted for enabling substantially adiabatic transverse-transfer of optical power between the optical waveguides at the respective optical junction regions. The first and second optical transmission subunits are assembled together to form an optical apparatus.
    Type: Application
    Filed: December 29, 2006
    Publication date: September 13, 2007
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20070110369
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: January 16, 2007
    Publication date: May 17, 2007
    Applicant: XPONENT PHOTONICS INC
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20070064219
    Abstract: A laser Doppler velocimeter is formed using erbium-doped fiber as the lasing medium. The fiber is diode-pumped. By properly modulating the lasing in the fiber, pulses of radiation may be generated. A telescope acts as the transmission device to focus the radiation at a specified point, and may also act as the receiving system for reflected radiation. The portion of the reflected radiation collected by the receiving system is analyzed to determine the Doppler shift caused by aerosols or objects at the focal point of the telescope.
    Type: Application
    Filed: February 28, 2006
    Publication date: March 22, 2007
    Inventors: Philip Rogers, Kerry Vahala
  • Publication number: 20060127011
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: January 17, 2006
    Publication date: June 15, 2006
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20060120669
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: January 9, 2006
    Publication date: June 8, 2006
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20060039653
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Application
    Filed: November 16, 2004
    Publication date: February 23, 2006
    Inventors: Oskar Painter, David Vernooy, Kerry Vahala
  • Publication number: 20060002432
    Abstract: The present invention is a Raman laser and methods related thereto. In the preferred embodiments, the Raman laser comprises a laser pump signal in a fiber waveguide which is optically coupled to a micro-resonator through a fiber taper. The micro-resonator is constructed from a material that has a high Q when it is formed into a micro-resonator and is phase matched to the waveguide. The lasing frequency can be determined based upon the pump input or the micro-resonator material. In the preferred embodiments, the micro-resonator is constructed from a fused silica material. The present invention provides a compact laser with improved emissions and coupling efficiencies and the ability to use stimulated Raman scattering effects to create lasers having frequencies that are otherwise difficult to obtain. Alternative configurations include multiple micro-resonators on a single fiber waveguide and/or utilizing multiple waveguides attached to one or more micro-resonators.
    Type: Application
    Filed: October 18, 2004
    Publication date: January 5, 2006
    Inventors: Kerry Vahala, Sean Spillane, Tobias Kippenberg
  • Publication number: 20050213889
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: May 25, 2005
    Publication date: September 29, 2005
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20050207699
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Application
    Filed: November 16, 2004
    Publication date: September 22, 2005
    Inventors: Oskar Painter, David Vernooy, Kerry Vahala
  • Publication number: 20050169331
    Abstract: Silica sol gel micro-lasers and methods of fabricating micro-lasers on a chip or a wafer. A silica sol gel micro-laser includes a silica sol gel optical micro-cavity, a substrate, and a support member or pillar that extends between the micro-cavity and the substrate. An outer surface or periphery of the micro-cavity extends beyond a top of the sol gel support member or is overhanging with respect to the underlying support member. Optical energy travels along an inner surface of the silica sol gel micro-cavity. Undoped silica sol gel micro-cavities can be used for Raman lasers. Sol gel micro-cavities can be doped with, for example, erbium, and can be used for erbium-doped micro-lasers that have ultra narrow line widths, for example, less than 100 Hz. Undoped and doped silica sol gel micro-lasers can have Q factors greater than 107.
    Type: Application
    Filed: November 9, 2004
    Publication date: August 4, 2005
    Inventors: Kerry Vahala, Lan Yang
  • Publication number: 20050163185
    Abstract: A micro-cavity resonator including a micro-cavity having a doped sol gel layer or solution applied thereto. The dopant can be various rare earth elements, such as erbium. The micro-cavity can be a spherical or disk or toroid shaped micro-cavity. Certain cavities are capable of high and ultra-high Q factors. Optical energy travels along an inner surface of the coated micro-cavity at a wavelength influenced or determined by the dopant in the coating.
    Type: Application
    Filed: December 17, 2004
    Publication date: July 28, 2005
    Inventors: Kerry Vahala, Lan Yang, Deniz Armani
  • Publication number: 20050135721
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Application
    Filed: November 15, 2004
    Publication date: June 23, 2005
    Inventors: Oskar Painter, David Vernooy, Kerry Vahala
  • Publication number: 20050135764
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Application
    Filed: November 16, 2004
    Publication date: June 23, 2005
    Inventors: Oskar Painter, David Vernooy, Kerry Vahala