Patents by Inventor Kerstin Ruttloff

Kerstin Ruttloff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8987103
    Abstract: In advanced semiconductor devices, spacer elements may be formed on the basis of a multi-station deposition technique, wherein a certain degree of variability of the various sub-layers of the spacer materials, such as a different thickness, may be applied in order to enhance etch conditions during the subsequent anisotropic etch process. Consequently, spacer elements of improved shape may result in superior deposition conditions when using a stress-inducing dielectric material. Consequently, yield losses due to contact failures in densely packed device areas, such as static RAM areas, may be reduced.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: March 24, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Markus Lenski, Kerstin Ruttloff, Volker Jaschke, Frank Seliger, Ralf Otterbach
  • Patent number: 8772843
    Abstract: A silicon dioxide material may be provided in sophisticated semiconductor devices in the form of a double liner including an undoped silicon dioxide material in combination with a high density plasma silicon dioxide, thereby providing reduced dependency on pattern density. In some illustrative embodiments, the silicon dioxide double liner may be used as a spacer material and as a hard mask material in process strategies for incorporating a strain-inducing semiconductor material.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Markus Lenski, Kerstin Ruttloff, Volker Jaschke
  • Patent number: 8709902
    Abstract: In complex semiconductor devices, the profiling of the deep drain and source regions may be accomplished individually for N-channel transistors and P-channel transistors without requiring any additional process steps by using a sacrificial spacer element as an etch mask and as an implantation mask for incorporating the drain and source dopant species for deep drain and source areas for one type of transistor. On the other hand, the usual main spacer may be used for the incorporation of the deep drain and source regions of the other type of transistor.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 29, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Kerstin Ruttloff, Maciej Wiatr, Stefan Flachowsky
  • Patent number: 8440534
    Abstract: Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: May 14, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg, Heike Berthold, Katrin Reiche, Frank Feustel, Kerstin Ruttloff
  • Patent number: 8436425
    Abstract: In an SOI semiconductor device, substrate diodes may be formed on the basis of a superior design of the contact level and the metallization layer, thereby avoiding the presence of metal lines connecting to both diode electrodes in the critical substrate diode area. To this end, contact trenches may be provided so as to locally connect one type of diode electrodes within the contact level. Consequently, additional process steps for planarizing the surface topography upon forming the contact level may be avoided.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 7, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Kai Frohberg, Kerstin Ruttloff
  • Patent number: 8318598
    Abstract: A contact element may be formed on the basis of a hard mask, which may be patterned on the basis of a first resist mask and on the basis of a second resist mask, to define an appropriate intersection area which may represent the final design dimensions of the contact element. Consequently, each of the resist masks may be formed on the basis of a photolithography process with less restrictive constraints, since at least one of the lateral dimensions may be selected as a non-critical dimension in each of the two resist masks.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: November 27, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sven Beyer, Kai Frohberg, Katrin Reiche, Kerstin Ruttloff
  • Publication number: 20120156837
    Abstract: In complex semiconductor devices, the profiling of the deep drain and source regions may be accomplished individually for N-channel transistors and P-channel transistors without requiring any additional process steps by using a sacrificial spacer element as an etch mask and as an implantation mask for incorporating the drain and source dopant species for deep drain and source areas for one type of transistor. On the other hand, the usual main spacer may be used for the incorporation of the deep drain and source regions of the other type of transistor.
    Type: Application
    Filed: July 28, 2011
    Publication date: June 21, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Thilo Scheiper, Kerstin Ruttloff, Maciej Wiatr, Stefan Flachowsky
  • Patent number: 8188871
    Abstract: In a memory cell, the drive current capabilities of the transistors may be adjusted by locally providing an increased gate dielectric thickness and/or gate length of one or more of the transistors of the memory cell. That is, the gate length and/or the gate dielectric thickness may vary along the transistor width direction, thereby providing an efficient mechanism for adjusting the effective drive current capability while at the same time allowing the usage of a simplified geometry of the active region, which may result in enhanced production yield due to enhanced process uniformity. In particular, the probability of creating short circuits caused by nickel silicide portions may be reduced.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: May 29, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Manfred Horstmann, Patrick Press, Karsten Wieczorek, Kerstin Ruttloff
  • Publication number: 20120049296
    Abstract: A silicon dioxide material may be provided in sophisticated semiconductor devices in the form of a double liner including an undoped silicon dioxide material in combination with a high density plasma silicon dioxide, thereby providing reduced dependency on pattern density. In some illustrative embodiments, the silicon dioxide double liner may be used as a spacer material and as a hard mask material in process strategies for incorporating a strain-inducing semiconductor material.
    Type: Application
    Filed: July 15, 2011
    Publication date: March 1, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Markus Lenski, Kerstin Ruttloff, Volker Jaschke
  • Patent number: 8110487
    Abstract: By incorporating a carbon species below the channel region of a P-channel transistor prior to the formation of the gate electrode structure, an efficient strain-inducing mechanism may provided, thereby enhancing performance of P-channel transistors. The position and size of the strain-inducing region may be determined on the basis of an implantation mask and respective implantation parameters, thereby providing a high degree of compatibility with conventional techniques, since the strain-inducing region may be incorporated at an early manufacturing stage, directly to respective “large area” contact elements.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: February 7, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Kai Frohberg, Christoph Schwan, Kerstin Ruttloff
  • Patent number: 8097542
    Abstract: In a dual stress liner approach, an intermediate etch stop material may be provided on the basis of a plasma-assisted oxidation process rather than by deposition so the corresponding thickness of the etch stop material may be reduced. Consequently, the resulting aspect ratio may be less pronounced compared to conventional strategies, thereby reducing deposition-related irregularities which may translate into a significant reduction of yield loss, in particular for highly scaled semiconductor devices.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: January 17, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Peter Huebler, Kerstin Ruttloff
  • Patent number: 8048726
    Abstract: In sophisticated SOI devices, circuit elements, such as substrate diodes, may be formed in the crystalline substrate material on the basis of a substrate window, wherein the pronounced surface topography may be compensated for or at least reduced by performing additional planarization processes, such as the deposition of a planarization material, and a subsequent etch process when forming the contact level of the semiconductor device.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 1, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Kai Frohberg, Sven Mueller, Kerstin Ruttloff
  • Patent number: 8039338
    Abstract: By incorporating nitrogen into the P-doped regions and N-doped regions of the gate electrode material prior to patterning the gate electrode structure, yield losses due to reactive wet chemical cleaning processes may be significantly reduced.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 18, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Manfred Horstmann, Peter Javorka, Karsten Wieczorek, Kerstin Ruttloff
  • Publication number: 20110223732
    Abstract: Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 15, 2011
    Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg, Heike Berthold, Katrin Reiche, Frank Feustel, Kerstin Ruttloff
  • Publication number: 20110186929
    Abstract: In an SOI semiconductor device, substrate diodes may be formed on the basis of a superior design of the contact level and the metallization layer, thereby avoiding the presence of metal lines connecting to both diode electrodes in the critical substrate diode area. To this end, contact trenches may be provided so as to locally connect one type of diode electrodes within the contact level. Consequently, additional process steps for planarizing the surface topography upon forming the contact level may be avoided.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 4, 2011
    Inventors: Jens Heinrich, Kai Frohberg, Kerstin Ruttloff
  • Publication number: 20110189825
    Abstract: In sophisticated SOI devices, circuit elements, such as substrate diodes, may be formed in the crystalline substrate material on the basis of a substrate window, wherein the pronounced surface topography may be compensated for or at least reduced by performing additional planarization processes, such as the deposition of a planarization material, and a subsequent etch process when forming the contact level of the semiconductor device.
    Type: Application
    Filed: October 28, 2010
    Publication date: August 4, 2011
    Inventors: Jens Heinrich, Kai Frohberg, Sven Mueller, Kerstin Ruttloff
  • Patent number: 7981740
    Abstract: When forming transistor elements on the basis of sophisticated high-k metal gate structures, the efficiency of a replacement gate approach may be enhanced by more efficiently adjusting the gate height of transistors of different conductivity type when the dielectric cap layers of transistors may have experienced a different process history and may thus require a subsequent adaptation of the final cap layer thickness in one type of the transistors. For this purpose, a hard mask material may be used during a process sequence for forming offset spacer elements in one gate electrode structure while covering another gate electrode structure.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 19, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Markus Lenski, Kerstin Ruttloff, Martin Mazur, Frank Seliger, Ralf Otterbach
  • Publication number: 20100330757
    Abstract: When forming transistor elements on the basis of sophisticated high-k metal gate structures, the efficiency of a replacement gate approach may be enhanced by more efficiently adjusting the gate height of transistors of different conductivity type when the dielectric cap layers of transistors may have experienced a different process history and may thus require a subsequent adaptation of the final cap layer thickness in one type of the transistors. For this purpose, a hard mask material may be used during a process sequence for forming offset spacer elements in one gate electrode structure while covering another gate electrode structure.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 30, 2010
    Inventors: Markus Lenski, Kerstin Ruttloff, Martin Mazur, Frank Seliger, Ralf Otterbach
  • Publication number: 20100289083
    Abstract: In advanced semiconductor devices, spacer elements may be formed on the basis of a multi-station deposition technique, wherein a certain degree of variability of the various sub-layers of the spacer materials, such as a different thickness, may be applied in order to enhance etch conditions during the subsequent anisotropic etch process. Consequently, spacer elements of improved shape may result in superior deposition conditions when using a stress-inducing dielectric material. Consequently, yield losses due to contact failures in densely packed device areas, such as static RAM areas, may be reduced.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 18, 2010
    Inventors: Markus Lenski, Kerstin Ruttloff, Volker Jaschke, Frank Seliger
  • Publication number: 20100078823
    Abstract: A contact element may be formed on the basis of a hard mask, which may be patterned on the basis of a first resist mask and on the basis of a second resist mask, to define an appropriate intersection area which may represent the final design dimensions of the contact element. Consequently, each of the resist masks may be formed on the basis of a photolithography process with less restrictive constraints, since at least one of the lateral dimensions may be selected as a non-critical dimension in each of the two resist masks.
    Type: Application
    Filed: August 7, 2009
    Publication date: April 1, 2010
    Inventors: Sven Beyer, Kai Frohberg, Katrin Reiche, Kerstin Ruttloff