Patents by Inventor Kesong HU

Kesong HU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946140
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of the plurality of apertures. The systems may define a plurality of isolators. An isolator may be positioned between each lid stack and a corresponding aperture of the plurality of apertures. The systems may include a plurality of annular spacers. An annular spacer of the plurality of annular spacers may be positioned between each isolator and a corresponding lid stack of the plurality of lids stacks. The systems may include a plurality of manifolds. A manifold may be seated within an interior of each annular spacer of the plurality of annular spacers.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Seyyed Abdolreza Fazeli, Yang Guo, Ramcharan Sundar, Arun Kumar Kotrappa, Steven Mosbrucker, Steven D. Marcus, Xinhai Han, Kesong Hu, Tianyang Li, Philip A. Kraus
  • Patent number: 11501993
    Abstract: Exemplary support assemblies may include an electrostatic chuck body defining a substrate support surface. The assemblies may include a support stem coupled with the electrostatic chuck body. The assemblies may include a heater embedded within the electrostatic chuck body. The assemblies may also include an electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The substrate support assemblies may be characterized by a leakage current through the electrostatic chuck body of less than or about 4 mA at a temperature of greater than or about 500° C. and a voltage of greater than or about 600 V.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: November 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jian Li, Juan Carlos Rocha-Alvarez, Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Xinhai Han, Deenesh Padhi, Kesong Hu, Chuan Ying Wang
  • Publication number: 20220307131
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of the plurality of apertures. The systems may define a plurality of isolators. An isolator may be positioned between each lid stack and a corresponding aperture of the plurality of apertures. The systems may include a plurality of annular spacers. An annular spacer of the plurality of annular spacers may be positioned between each isolator and a corresponding lid stack of the plurality of lids stacks. The systems may include a plurality of manifolds. A manifold may be seated within an interior of each annular spacer of the plurality of annular spacers.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Seyyed Abdolreza Fazeli, Yang Guo, Ramcharan Sundar, Arun Kumar Kotrappa, Steven Mosbrucker, Steven D. Marcus, Xinhai Han, Kesong Hu, Tianyang Li, Philip A. Kraus
  • Publication number: 20210040607
    Abstract: Exemplary methods of forming semiconductor structures may include forming a silicon oxide layer from a silicon-containing precursor and an oxygen-containing precursor. The methods may include forming a silicon nitride layer from a silicon-containing precursor, a nitrogen-containing precursor, and an oxygen-containing precursor. The silicon nitride layer may be characterized by an oxygen concentration greater than or about 5 at. %. The methods may also include repeating the forming a silicon oxide layer and the forming a silicon nitride layer to produce a stack of alternating layers of silicon oxide and silicon nitride.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 11, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Xinhai Han, Hang Yu, Kesong Hu, Kristopher Enslow, Masaki Ogata, Wenjiao Wang, Chuan Ying Wang, Chuanxi Yang, Joshua Maher, Phaik Lynn Leong, Qi En Teong, Alok Jain, Nagarajan Rajagopalan, Deenesh Padhi
  • Publication number: 20210035843
    Abstract: Exemplary support assemblies may include an electrostatic chuck body defining a substrate support surface. The assemblies may include a support stem coupled with the electrostatic chuck body. The assemblies may include a heater embedded within the electrostatic chuck body. The assemblies may also include an electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The substrate support assemblies may be characterized by a leakage current through the electrostatic chuck body of less than or about 4 mA at a temperature of greater than or about 500° C. and a voltage of greater than or about 600 V.
    Type: Application
    Filed: July 22, 2020
    Publication date: February 4, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Juan C. Rocha, Zheng J. Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Xinhai Han, Deenesh Padhi, Kesong Hu, Chuan-Ying Wang
  • Publication number: 20200190664
    Abstract: Methods for depositing hardmask materials and films, and more specifically, for depositing phosphorus-doped, silicon nitride films are provided. A method of depositing a material on a substrate in a processing chamber includes exposing a substrate to a deposition gas in the presence of RF power to deposit a phosphorus-doped, silicon nitride film on the substrate during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The deposition gas contains one or more silicon precursors, one or more nitrogen precursors, one or more phosphorus precursors, and one or more carrier gases. The phosphorus-doped, silicon nitride film has a phosphorus concentration in a range from about 0.1 atomic percent (at %) to about 10 at %.
    Type: Application
    Filed: October 14, 2019
    Publication date: June 18, 2020
    Inventors: Kesong HU, Rana HOWLADER, Michael Wenyoung TSIANG, Xinhai HAN, Hang YU, Deenesh PADHI