Patents by Inventor Kevin A. Harnsberry

Kevin A. Harnsberry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11987745
    Abstract: Solvent mixtures for downhole elemental sulfur removal and formation stimulation, and methods for utilizing such solvent mixtures, are described herein. One method includes providing a solvent mixture that includes an elemental sulfur solvent fraction and an odorant fraction that includes a lactate ester solvent. The method also includes injecting the solvent mixture into a hydrocarbon well such that the elemental sulfur solvent fraction of the solvent mixture dissolves elemental sulfur deposited on well components, and contacting the solvent mixture with water such that the lactate ester solvent within the odorant fraction reacts with the water to generate lactic acid. The method further includes stimulating a formation through which the hydrocarbon well extends by flowing the solvent mixture including the lactic acid through the hydrocarbon well and into the formation.
    Type: Grant
    Filed: June 12, 2023
    Date of Patent: May 21, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Kevin A. Harnsberry, Paul Scott Northrop
  • Publication number: 20240034923
    Abstract: Disulfide solvents may be particularly effective for dissolving deposits comprising elemental sulfur, but the extreme odor of these solvent may make their use rather problematic. Solvent blends comprising at least one disulfide solvent, amine solvent, ketone solvent, and ester solvent may afford a less obnoxious odor and not appreciably compromise the sulfur dissolution capabilities. Surfaces contacted with such solvent blends or at least partially spent variants thereof may exhibit excessive odor due to loss of one or more of the amine, ketone, or ester solvents. Excessive odor resulting from a solvent residue upon a surface may be alleviated by contacting the surface with at least one oxidant. Odor balance may also be restored to at least partially spent solvent blends by introducing additional ester solvent, which may convert a biphasic mixture into an emulsion comprising the disulfide solvent.
    Type: Application
    Filed: October 8, 2021
    Publication date: February 1, 2024
    Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Kevin A. HARNSBERRY, P. Scott NORTHROP
  • Publication number: 20240018410
    Abstract: Solids dissolution may be promoted using a solvent blend comprising a disulfide solvent, particularly additional solids present in combination with elemental sulfur deposits. The solvent blends may comprise at least one disulfide solvent, at least one amine solvent, at least one ketone solvent, at least one ester solvent, and optionally water. Solids dissolution methods may comprise: identifying one or more solids in addition to elemental sulfur to be contacted by the solvent blend; adjusting a composition of the solvent blend to afford selectivity for dissolution of at least a portion of the one or more solids; and contacting the solvent blend with elemental sulfur and the one or more solids to promote at least partial dissolution thereof.
    Type: Application
    Filed: October 11, 2021
    Publication date: January 18, 2024
    Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Kevin A. HARNSBERRY, P. Scott NORTHROP
  • Publication number: 20230323189
    Abstract: Solvent mixtures for downhole elemental sulfur removal and formation stimulation, and methods for utilizing such solvent mixtures, are described herein. One method includes providing a solvent mixture that includes an elemental sulfur solvent fraction and an odorant fraction that includes a lactate ester solvent. The method also includes injecting the solvent mixture into a hydrocarbon well such that the elemental sulfur solvent fraction of the solvent mixture dissolves elemental sulfur deposited on well components, and contacting the solvent mixture with water such that the lactate ester solvent within the odorant fraction reacts with the water to generate lactic acid. The method further includes stimulating a formation through which the hydrocarbon well extends by flowing the solvent mixture including the lactic acid through the hydrocarbon well and into the formation.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 12, 2023
    Inventors: Kevin A. HARNSBERRY, Paul Scott NORTHROP
  • Patent number: 11739251
    Abstract: Solvent mixtures for downhole elemental sulfur removal and formation stimulation, and methods for utilizing such solvent mixtures, are described herein. One method includes providing a solvent mixture that includes an elemental sulfur solvent fraction and an odorant fraction that includes a lactate ester solvent. The method also includes injecting the solvent mixture into a hydrocarbon well such that the elemental sulfur solvent fraction of the solvent mixture dissolves elemental sulfur deposited on well components, and contacting the solvent mixture with water such that the lactate ester solvent within the odorant fraction reacts with the water to generate lactic acid. The method further includes stimulating a formation through which the hydrocarbon well extends by flowing the solvent mixture including the lactic acid through the hydrocarbon well and into the formation.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: August 29, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Kevin A. Harnsberry, Paul Scott Northrop
  • Publication number: 20230017959
    Abstract: Solvent mixtures for downhole elemental sulfur removal and formation stimulation, and methods for utilizing such solvent mixtures, are described herein. One method includes providing a solvent mixture that includes an elemental sulfur solvent fraction and an odorant fraction that includes a lactate ester solvent. The method also includes injecting the solvent mixture into a hydrocarbon well such that the elemental sulfur solvent fraction of the solvent mixture dissolves elemental sulfur deposited on well components, and contacting the solvent mixture with water such that the lactate ester solvent within the odorant fraction reacts with the water to generate lactic acid. The method further includes stimulating a formation through which the hydrocarbon well extends by flowing the solvent mixture including the lactic acid through the hydrocarbon well and into the formation.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 19, 2023
    Inventors: Kevin A. HARNSBERRY, Paul Scott NORTHROP
  • Patent number: 11492540
    Abstract: Solvent mixtures for downhole elemental sulfur removal and formation stimulation, and methods for utilizing such solvent mixtures, are described herein. One method includes providing a solvent mixture that includes an elemental sulfur solvent fraction and an odorant fraction that includes a lactate ester solvent. The method also includes injecting the solvent mixture into a hydrocarbon well such that the elemental sulfur solvent fraction of the solvent mixture dissolves elemental sulfur deposited on well components, and contacting the solvent mixture with water such that the lactate ester solvent within the odorant fraction reacts with the water to generate lactic acid. The method further includes stimulating a formation through which the hydrocarbon well extends by flowing the solvent mixture including the lactic acid through the hydrocarbon well and into the formation.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: November 8, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Kevin A. Harnsberry, Paul Scott Northrop
  • Patent number: 11118098
    Abstract: Solvent mixtures for dissolving elemental sulfur, methods of utilizing the solvent mixtures, and methods of forming the solvent mixtures. The solvent mixtures include an elemental sulfur solvent fraction and an odorant fraction. The elemental sulfur solvent fraction includes an elemental sulfur solvent that has a solvent odor and a solvent sulfur solubility of at least 10 weight percent (wt %). The odorant fraction includes at least one odorant that has an odorant odor that differs from the solvent odor. The solvent mixture includes at least 20 wt % and at most 80 wt % of both the elemental sulfur solvent fraction and the odorant fraction. The presence of the odorant fraction, within the solvent mixture, decreases an intensity of the mixture odor relative to the solvent odor and/or decreases an offensiveness of the mixture odor relative to the solvent odor.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: September 14, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: P. Scott Northrop, Kevin A. Harnsberry
  • Publication number: 20200002599
    Abstract: Solvent mixtures for dissolving elemental sulfur, methods of utilizing the solvent mixtures, and methods of forming the solvent mixtures. The solvent mixtures include an elemental sulfur solvent fraction and an odorant fraction. The elemental sulfur solvent fraction includes an elemental sulfur solvent that has a solvent odor and a solvent sulfur solubility of at least 10 weight percent (wt %). The odorant fraction includes at least one odorant that has an odorant odor that differs from the solvent odor. The solvent mixture includes at least 20 wt % and at most 80 wt % of both the elemental sulfur solvent fraction and the odorant fraction. The presence of the odorant fraction, within the solvent mixture, decreases an intensity of the mixture odor relative to the solvent odor and/or decreases an offensiveness of the mixture odor relative to the solvent odor.
    Type: Application
    Filed: June 10, 2019
    Publication date: January 2, 2020
    Inventors: P. Scott Northrop, Kevin A. Harnsberry