Patents by Inventor Kevin A. LANDSMAN

Kevin A. LANDSMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12141657
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: November 12, 2024
    Assignees: IonQ, Inc., University of Maryland, College Park
    Inventors: Caroline Figgatt, Aaron Ostrander, Norbert M. Linke, Kevin A. Landsman, Daiwei Zhu, Dmitri Maslov, Christopher Monroe
  • Publication number: 20230368056
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 16, 2023
    Inventors: Caroline FIGGATT, Aaron OSTRANDER, Norbert M. LINKE, Kevin A. LANDSMAN, Daiwei ZHU, Dmitri MASLOV, Christopher MONROE
  • Patent number: 11710062
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: July 25, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, IONQ, INC.
    Inventors: Caroline Figgatt, Aaron Ostrander, Norbert M. Linke, Kevin A. Landsman, Daiwei Zhu, Dmitri Maslov, Christopher Monroe
  • Publication number: 20220083889
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 17, 2022
    Inventors: Caroline FIGGATT, Aaron OSTRANDER, Norbert M. LINKE, Kevin A. LANDSMAN, Daiwei ZHU, Dmitri MASLOV, Christopher MONROE
  • Patent number: 11157826
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 26, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, IONQ, INC.
    Inventors: Caroline Figgatt, Aaron Ostrander, Norbert M. Linke, Kevin A. Landsman, Daiwei Zhu, Dmitri Maslov, Christopher Monroe
  • Publication number: 20190378033
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 12, 2019
    Inventors: Caroline FIGGATT, Aaron OSTRANDER, Norbert M. LINKE, Kevin A. LANDSMAN, Daiwei ZHU, Dmitri MASLOV, Christopher MONROE