Patents by Inventor Kevin A. Papke

Kevin A. Papke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810766
    Abstract: Embodiments of the present disclosure are directed towards a protective multilayer coating for process chamber components exposed to temperatures from about 20° C. to about 300° C. during use of the process chamber. The protective multilayer coating comprises a bond layer and a top layer, the bond layer is formed on a chamber component to reduce the stress between the top layer and the chamber component. The reduced stress decreases or prevents particle shedding from the top layer of the multilayer coating during and after use of the process chamber. The bond layer comprises titanium, titanium nitride, aluminum, or combinations thereof, and the top layer comprises tungsten nitride.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Karthikeyan Balaraman, Sathyanarayana Bindiganavale, Rajasekhar Patibandla, Balamurugan Ramasamy, Kartik Shah, Umesh M. Kelkar, Mats Larsson, Kevin A. Papke, William M. Lu
  • Publication number: 20230167543
    Abstract: One embodiment of the disclosure provides a method of fabricating a chamber component with a coating layer disposed on an interface layer with desired film properties. In one embodiment, a method of fabricating a coating material includes providing a base structure comprising an aluminum or silicon containing material, forming an interface layer on the base structure, wherein the interface layer comprises one or more elements from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and forming a coating layer on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz. In another embodiment, a chamber component includes an interface layer disposed on a base structure, wherein the interface layer is selected from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and a coating layer disposed on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 1, 2023
    Inventors: Mats LARSSON, Kevin A. PAPKE, Chirag Shaileshbhai KHAIRNAR, Rajasekhar PATIBANDLA, Karthikeyan BALARAMAN, Balamurugan RAMASAMY, Kartik SHAH, Umesh M. KELKAR
  • Patent number: 11591689
    Abstract: One embodiment of the disclosure provides a method of fabricating a chamber component with a coating layer disposed on an interface layer with desired film properties. In one embodiment, a method of fabricating a coating material includes providing a base structure comprising an aluminum or silicon containing material, forming an interface layer on the base structure, wherein the interface layer comprises one or more elements from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and forming a coating layer on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz. In another embodiment, a chamber component includes an interface layer disposed on a base structure, wherein the interface layer is selected from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and a coating layer disposed on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mats Larsson, Kevin A. Papke, Chirag Shaileshbhai Khairnar, Rajasekhar Patibandla, Karthikeyan Balaraman, Balamurugan Ramasamy, Kartik Shah, Umesh M. Kelkar
  • Publication number: 20220277936
    Abstract: The present disclosure relates to protective multilayer coatings for processing clumbers and processing clumber components. In one embodiment, a multilayer protean e coating includes a metal nitride layer and an oxide layer disposed thereon. In one embodiment, the multilayer protective coating further includes an oxynitride interlayer and/or an oxy fluoride layer. The multilayer protective coating may be formed on a metal alloy or ceramic substrate, such as a processing clumber or a processing clumber component used in tire field of electronic device manufacturing, e.g., semiconductor device manufacturing. In one embodiment, the metal nitride layer and the oxide layer are deposited on the substrate by atomic layer deposition.
    Type: Application
    Filed: June 22, 2020
    Publication date: September 1, 2022
    Inventors: Geetika BAJAJ, Yogita PAREEK, Darshan THAKARE, Prerna Sonthalia GORADIA, Ankur KADAM, Kevin A. PAPKE
  • Patent number: 11239058
    Abstract: Embodiments of the present disclosure provide protective coatings, i.e., diffusion and thermal barrier coatings, for aluminum alloy substrates. In particular, embodiments described herein provide a protective layer stack comprising a tantalum nitride layer disposed on an aluminum alloy substrate and a ceramic layer disposed on the tantalum nitride layer. In some embodiments, the aluminum alloy substrates comprise processing chambers and processing chamber components used in the field of electronic device manufacturing, e.g., semiconductor device manufacturing. In one embodiment, an article includes a substrate, a tantalum nitride layer disposed on the substrate, and a ceramic layer disposed on the tantalum nitride layer.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: February 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Karthikeyan Balaraman, Balamurugan Ramasamy, Kartik Shah, Mats Larsson, Kevin A. Papke, Rajasekhar Patibandla, Sathyanarayana Bindiganavale, Umesh M. Kelkar
  • Patent number: 11118263
    Abstract: A method of forming a protective coating film for halide plasma resistance includes depositing a seed layer on a surface of an article via an atomic layer deposition (ALD) process, depositing a rare-earth containing oxide layer on the seed layer via an ALD process, and exposing the rare-earth containing oxide layer to fluorine-containing plasma.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: September 14, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yogita Pareek, Kevin A. Papke, Emily Sierra Thomson, Mahmut Sami Kavrik, Andrew C. Kummel
  • Patent number: 11047035
    Abstract: Disclosed herein is a poly-crystalline protective coating on a surface of a chamber component. The poly-crystalline protective coating may be deposited by thermal spraying and may comprise cubic yttria and monoclinic yttria. At least one of: (1) the ratio of the cubic yttria to monoclinic yttria, (2) the crystallite size of at least one of the cubic yttria or the monoclinic yttria, (3) the atomic ratio of oxygen (O) to yttria (Y), and/or (4) the dielectric properties of the poly-crystalline protective coating may be controlled to obtain consistent chamber performance when switching coated chamber components within a chamber of interest.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: June 29, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ramesh Gopalan, Yixing Lin, Tasnuva Tabassum, Siamak Salimian, Yikai Chen, Kevin Papke
  • Patent number: 10941303
    Abstract: Embodiments of the disclosure provide a chamber component for use in a plasma processing chamber apparatus. The chamber component may include a coating layer that provides a fluorine-rich surface. In one embodiment, a chamber component, for use in a plasma processing apparatus, includes a body having an outer layer comprising yttria having a coating layer formed thereon, wherein the coating layer comprises a yttrium fluoride containing material.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mats Larsson, Yogita Pareek, Jianqi Wang, Kevin A. Papke
  • Patent number: 10921251
    Abstract: The present invention generally relates method and part wear indicator for identifying an eroded chamber component in an etching or other plasma processing chamber. In one embodiment, a chamber component has a part wear indicator. The chamber component has a body. The body has a top surface and a bottom surface. A part wear indicator material is disposed in the chamber component body. The part wear indicator has a body. The body of the part wear indicator has a transparent first layer. A second layer has a tracer material disposed therein and wherein the first layer is closer to the top surface of the top surface than the second layer.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: February 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mats Larsson, Kevin A. Papke
  • Patent number: 10883972
    Abstract: Embodiments of the disclosure generally relate to a system, apparatus and method for testing a coating over a semiconductor chamber component. In one embodiment, a test station comprises a hollow tube, a sensor coupled to a top end of the tube and a processing system communicatively coupled to the sensor. The hollow tube has an open bottom end configured for sealingly engaging a coating layer of the semiconductor chamber component. The sensor is configured to detect the presence of a gaseous byproduct of a reaction between a reagent disposed in the hollow tube and a base layer disposed under the coating layer. The processing system is configured to determine exposure of the base layer through the coating layer in response to information about the presence of the gaseous byproduct. In another embodiment, the processing system is communicatively coupled to each sensor of a plurality of test stations.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Tasnuva Tabassum, Mats Larsson, Kevin A. Papke
  • Publication number: 20200354833
    Abstract: A method of forming a protective coating film for halide plasma resistance includes depositing a seed layer on a surface of an article via an atomic layer deposition (ALD) process, depositing a rare-earth containing oxide layer on the seed layer via an ALD process, and exposing the rare-earth containing oxide layer to fluorine-containing plasma.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 12, 2020
    Inventors: Yogita PAREEK, Kevin A. PAPKE, Emily Sierra THOMSON, Mahmut Sami KAVRIK, Andrew C. KUMMEL
  • Publication number: 20200270747
    Abstract: One embodiment of the disclosure provides a method of fabricating a chamber component with a coating layer disposed on an interface layer with desired film properties. In one embodiment, a method of fabricating a coating material includes providing a base structure comprising an aluminum or silicon containing material, forming an interface layer on the base structure, wherein the interface layer comprises one or more elements from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and forming a coating layer on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz. In another embodiment, a chamber component includes an interface layer disposed on a base structure, wherein the interface layer is selected from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and a coating layer disposed on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 27, 2020
    Inventors: Mats LARSSON, Kevin A. PAPKE, Chirag Shaileshbhai KHAIRNAR, Rajasekhar PATIBANDLA, Karthikeyan BALARAMAN, Balamurugan RAMASAMY, Kartik SHAH, Umesh M. KELKAR
  • Patent number: 10583465
    Abstract: The implementations described herein generally relate to 30 nm in-line liquid particle count testing equipment which analyses and cleans semiconductor processing equipment. More specifically, the implementations described relate to a system for diluting, analyzing, and modifying fluids to enable the observation of the contents of the fluids. A dilution sampling tool is coupled with a liquid particle detector for reading the contents of an extraction solution containing particles from semiconductor processing equipment, such as a liner, a shield, a faceplate, or a showerhead, in a cleaning tank. As such, accurate liquid particle readings may be had which reduce oversaturation of the particle detector.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: March 10, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jianqi Wang, William Ming-ye Lu, Yixing Lin, Kevin A. Papke
  • Publication number: 20200020511
    Abstract: Embodiments of the present disclosure provide protective coatings, i.e., diffusion and thermal barrier coatings, for aluminum alloy substrates. In particular, embodiments described herein provide a protective layer stack comprising a tantalum nitride layer disposed on an aluminum alloy substrate and a ceramic layer disposed on the tantalum nitride layer. In some embodiments, the aluminum alloy substrates comprise processing chambers and processing chamber components used in the field of electronic device manufacturing, e.g., semiconductor device manufacturing. In one embodiment, an article includes a substrate, a tantalum nitride layer disposed on the substrate, and a ceramic layer disposed on the tantalum nitride layer.
    Type: Application
    Filed: May 14, 2019
    Publication date: January 16, 2020
    Inventors: Karthikeyan BALARAMAN, Balamurugan RAMASAMY, Kartik SHAH, Mats LARSSON, Kevin A. PAPKE, Rajasekhar PATIBANDLA, Sathyanarayana BINDIGANAVALE, Umesh M. KELKAR
  • Publication number: 20200013589
    Abstract: Embodiments of the present disclosure are directed towards a protective multilayer coating for process chamber components exposed to temperatures from about 20° C. to about 300° C. during use of the process chamber. The protective multilayer coating comprises a bond layer and a top layer, the bond layer is formed on a chamber component to reduce the stress between the top layer and the chamber component. The reduced stress decreases or prevents particle shedding from the top layer of the multilayer coating during and after use of the process chamber. The bond layer comprises titanium, titanium nitride, aluminum, or combinations thereof, and the top layer comprises tungsten nitride.
    Type: Application
    Filed: May 2, 2019
    Publication date: January 9, 2020
    Inventors: Karthikeyan BALARAMAN, Sathyanarayana BINDIGANAVALE, Rajasekhar PATIBANDLA, Balamurugan RAMASAMY, Kartik SHAH, Umesh M. KELKAR, Mats LARSSON, Kevin A. PAPKE, William M. LU
  • Publication number: 20190264314
    Abstract: Disclosed herein is a poly-crystalline protective coating on a surface of a chamber component. The poly-crystalline protective coating may be deposited by thermal spraying and may comprise cubic yttria and monoclinic yttria. At least one of: (1) the ratio of the cubic yttria to monoclinic yttria, (2) the crystallite size of at least one of the cubic yttria or the monoclinic yttria, (3) the atomic ratio of oxygen (O) to yttria (Y), and/or (4) the dielectric properties of the poly-crystalline protective coating may be controlled to obtain consistent chamber performance when switching coated chamber components within a chamber of interest.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 29, 2019
    Inventors: Ramesh Gopalan, Yixing Lin, Tasnuva Tabassum, Siamak Salimian, Yikai Chen, Kevin Papke
  • Patent number: 10253406
    Abstract: The present disclosure generally relates to methods of electro-chemically forming yttria or yttrium oxide. The methods may include the optional preparation of a an electrochemical bath, the electrodepositon of yttria or yttrium oxide onto a substrate, removal of solvent form the surface of the substrate, and post treatment of the substrate having the electrodeposited yttria or yttrium oxide thereon.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: April 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Prerna S. Goradia, Geetika Bajaj, Yogita Pareek, Yixing Lin, Dmitry Lubomirsky, Ankur Kadam, Bipin Thakur, Kevin A. Papke, Kaushik Vaidya
  • Patent number: 10233554
    Abstract: The present disclosure generally relates to methods of electro-chemically forming aluminum or aluminum oxide. The methods may include the optional preparation of a an electrochemical bath, the electrodepositon of aluminum or aluminum oxide onto a substrate, removal of solvent form the surface of the substrate, and post treatment of the substrate having the electrodeposited aluminum or aluminum oxide thereon.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: March 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yogita Pareek, Laksheswar Kalita, Geetika Bajaj, Kevin A. Papke, Ankur Kadam, Bipin Thakur, Yixing Lin, Dmitry Lubomirsky, Prerna S. Goradia
  • Publication number: 20190070639
    Abstract: Disclosed herein is an apparatus for cleaning a process kit comprising a body, a cleaning source, and a control system. The body is formed from multiple modules configured to couple to, and receive therein, a process kit part. A plurality of cleaning agents may be sequentially delivered to the body in order to remove the particles disposed on the process part.
    Type: Application
    Filed: October 16, 2017
    Publication date: March 7, 2019
    Inventors: Roy C. NANGOY, Allen L. D'AMBRA, Kevin A. PAPKE
  • Publication number: 20180330929
    Abstract: Embodiments of the disclosure generally relate to methods for removal of accumulated process byproducts from components of a semiconductor processing chamber. In one embodiment of the disclosure, a method for cleaning components within a processing chamber is disclosed. The method includes heating the components within the processing chamber to a temperature between about 150-300 degrees Celsius, exposing the components of the chamber to one or more precursor gases and removing a product of a reaction between a fluorine-based compound disposed on the components and the one or more precursor gases. The one or more precursor gases include trimethyl aluminum or tin acetylacetonate.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Ranga Rao ARNEPALLI, Bipin THAKUR, Kevin A. PAPKE, Yogita PAREEK