Patents by Inventor Kevin B. Jackson

Kevin B. Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240077309
    Abstract: The present disclosure generally relates to displaying information related to a physical activity. In some embodiments, methods and user interfaces for managing the display of information related to a physical activity are described.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 7, 2024
    Inventors: Nicholas D. FELTON, James B. CARY, Edward CHAO, Kevin W. CHEN, Christopher P. FOSS, Eamon F. GILRAVI, Austen J. GREEN, Bradley W. GRIFFIN, Anders K. HAGLUNDS, Lori HYLAN-CHO, Stephen P. JACKSON, Matthew S. KOONCE, Paul T. NIXON, Robert M. PEARSON
  • Publication number: 20230271857
    Abstract: A method of moderating concentration of at least highly fluorinated alkyl materials (e.g., molecules) from a contaminated aqueous feed liquid containing an original composition of between 5 parts/trillion and 3000 parts/billion of the at least highly fluorinated materials per liter of water into an aqueous electronic separator having multiple chambers including a feed chamber having a liquid exit port from which a mediated aqueous contaminated feed liquid exits and a liquid input port into which the contaminated aqueous feed liquid enters the feed chamber; an anodic electrode chamber filled with an aqueous anodic liquid; and a cathodic electrode chamber filled with an aqueous cathodic liquid; wherein the feed chamber is between and adjacent to the anodic electrode chamber and the cathodic electrode chamber and the feed chamber is separated from each of the anodic electrode chamber and the cathodic electrode chamber by at least one semipermeable membrane.
    Type: Application
    Filed: September 14, 2021
    Publication date: August 31, 2023
    Inventors: Randall P. Moore, Kevin B. Jackson
  • Patent number: 11634337
    Abstract: A process for the chemical conversion of contaminated magnesium hydroxide to high purity solutions of magnesium bicarbonate include steps of providing an impure reagent including at least 40% and less than 95% by total weight of total metals of magnesium in a form of solid magnesium hydroxide and at least 10% by weight of total metals of calcium carbonate, combining the impure reagent containing the solid magnesium hydroxide with carbonic acid in water, thereby generating magnesium bicarbonate and water and then filtering out solid calcium carbonate leaving a solution of magnesium bicarbonate in water having a by weight ratio of Mg/(Mg+Ca) in the solution of greater than 95%. Heating and/or drying the magnesium bicarbonate solution produces correspondingly high purity magnesium carbonate.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: April 25, 2023
    Inventors: Randall P. Moore, Kevin B. Jackson, James G. Blencoe
  • Publication number: 20220135445
    Abstract: A method of moderating concentration of at least highly fluorinated alkyl materials from a contaminated aqueous feed liquid containing an original composition of between 60 parts per trillion and 300 parts per billion of the at least highly fluorinated materials per liter of water into an aqueous electronic separator having at least three chambers including a feed chamber having a liquid exit port from which a mediated aqueous contaminated feed liquid exits and a liquid input port into which the contaminated aqueous feed liquid enters the feed chamber; an anodic electrode chamber filled with an aqueous anodic liquid; and a cathodic electrode chamber filled with an aqueous cathodic liquid; wherein the feed chamber is between and adjacent to the anodic electrode chamber and the cathodic electrode chamber and the feed chamber is separated from each of the anodic electrode chamber and the cathodic electrode chamber by at least one semipermeable membrane.
    Type: Application
    Filed: November 3, 2020
    Publication date: May 5, 2022
    Inventors: Randall P. Moore, Kevin B. Jackson
  • Publication number: 20220135446
    Abstract: A method of moderating concentration of at least highly fluorinated alkyl materials (e.g., molecules) from a contaminated aqueous feed liquid containing an original composition of between 5 parts/trillion and 3000 parts/billion of the at least highly fluorinated materials per liter of water into an aqueous electronic separator having multiple chambers including a feed chamber having a liquid exit port from which a mediated aqueous contaminated feed liquid exits and a liquid input port into which the contaminated aqueous feed liquid enters the feed chamber; an anodic electrode chamber filled with an aqueous anodic liquid; and a cathodic electrode chamber filled with an aqueous cathodic liquid; wherein the feed chamber is between and adjacent to the anodic electrode chamber and the cathodic electrode chamber and the feed chamber is separated from each of the anodic electrode chamber and the cathodic electrode chamber by at least one semipermeable membrane.
    Type: Application
    Filed: April 21, 2021
    Publication date: May 5, 2022
    Inventors: Randall Moore, Kevin B. Jackson
  • Publication number: 20220048784
    Abstract: A process for the chemical conversion of contaminated magnesium hydroxide to high purity solutions of magnesium bicarbonate include steps of providing an impure reagent including at least 40% and less than 95% by total weight of total metals of magnesium in a form of solid magnesium hydroxide and at least 10% by weight of total metals of calcium carbonate, combining the impure reagent containing the solid magnesium hydroxide with carbonic acid in water, thereby generating magnesium bicarbonate and water and then filtering out solid calcium carbonate leaving a solution of magnesium bicarbonate in water having a by weight ratio of Mg/(Mg+Ca) in the solution of greater than 95%. Heating and/or drying the magnesium bicarbonate solution produces correspondingly high purity magnesium carbonate.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 17, 2022
    Inventors: Randall P. Moore, Kevin B. Jackson, James G. Blencoe
  • Patent number: 5066991
    Abstract: High voltage (200-400 volts) Zener diodes having much improved resistance to degradation under 150.degree. C. HTRB are obtained by a junction passivation comprising a thermal oxide next to the silicon, covered by a TEOS CVD glass, a CVD nitride and a further TEOS CVD glass. Multiple Zener voltages are obtained with otherwise identical, simultaneous wafer processing steps by using epi-wafers having different epi doping and thickness. Back-side lap for wafer thinning is avoided.
    Type: Grant
    Filed: August 20, 1990
    Date of Patent: November 19, 1991
    Assignee: Motorola, Inc.
    Inventor: Kevin B. Jackson
  • Patent number: 4978636
    Abstract: High voltage (200-400 volts) Zener diodes having much improved resistance to degradation under 150.degree. C. HTRB are obtained by a junction passivation comprising a thermal oxide next to the silicon, covered by a TEOS CVD glass, a CVD nitride and a further TEOS CVD glass. Multiple Zener voltages are obtained with otherwise identical, simultaneous wafer processing steps by using epi-wafers having different epi doping and thickness. Back-side for wafer thinning is avoided.
    Type: Grant
    Filed: December 26, 1989
    Date of Patent: December 18, 1990
    Assignee: Motorola Inc.
    Inventor: Kevin B. Jackson
  • Patent number: 4886762
    Abstract: An improved monolithic, temperature compensated voltage- reference diode is realized by creating a tub of epitaxial semiconductor material in a substrate of opposite conductivity type and creating a voltage reference junction at a surface of the tub. The junction between the tub and the substrate forms the forward-biased, temperature compensating junction of the device. The dopant concentration is varied during growth of the epitaxial material to provide a relatively low resistivity at the voltage-reference junction and a higher resistivity at the temperature compensating junction. The method described offers significant improvement over prior methods of manufacturing such devices in the area of cost and reliability.
    Type: Grant
    Filed: July 3, 1989
    Date of Patent: December 12, 1989
    Assignee: Motorola Inc.
    Inventors: Bernard W. Boland, William E. Gandy, Jr., Kevin B Jackson
  • Patent number: 4870467
    Abstract: An improved monolithic, temperature compensated voltage-reference diode is realized by creating a tub of epitaxial semiconductor material in a substrate of opposite conductivity type and creating a voltage reference junction at a surface of the tub. The junction between the tub and the substrate forms the forward-biased, temperature compensating junction of the device. The dopant concentration is varied during growth of the epitaxial material to provide a relatively low resistivity at the voltage-reference junction and a higher resistivity at the temperature compensating junction. The method described offers significant improvement over prior methods of manufacturing such devices in the area of cost and reliability.
    Type: Grant
    Filed: August 6, 1985
    Date of Patent: September 26, 1989
    Assignee: Motorola, Inc.
    Inventors: Bernard W. Boland, William E. Gandy, Jr., Kevin B. Jackson