Patents by Inventor Kevin Barry Reiman

Kevin Barry Reiman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160122239
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of compression DOC of at least about 125 ?m within the glass article. The compressive stress profile includes a single linear segment or portion extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile may include an additional portion extending from the surface to a relatively shallow depth and the linear portion extending from the shallow depth to the depth of compression.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 5, 2016
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20150368153
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 24, 2015
    Inventors: Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev
  • Publication number: 20150259244
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of layer DOL of about 130 ?m up to about 175 ?m or, alternatively, to a depth of compression (DOC) in a range from about 90 ?m to about 120 ?m within the article. The compressive layer has a stress profile that includes a first substantially linear portion extending from a relatively shallow depth to the DOL or DOC and a second portion extending from the surface to the shallow depth. The second portion is substantially linear at a depth from 0 ?m to 5 ?m and has a steeper slope than that of the first portion of the profile. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: May 28, 2015
    Publication date: September 17, 2015
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Pascale Oram, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Brian Paul Strines
  • Publication number: 20150239776
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: October 31, 2014
    Publication date: August 27, 2015
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20150239775
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: October 31, 2014
    Publication date: August 27, 2015
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20150079398
    Abstract: Embodiments of a layered-substrate comprising a substrate and a layer disposed thereon, wherein the layered-substrate is able to withstand fracture when assembled with a device that is dropped from a height of at least 100 cm onto a drop surface, are disclosed. The layered-substrate may exhibit a hardness of at least about 10 GPa or at least about 20 GPa. The substrate may include an amorphous substrate or a crystalline substrate. Examples of amorphous substrates include glass, which is optionally chemically strengthened. Examples of crystalline substrates include single crystal substrates (e.g. sapphire) and glass ceramics. Articles and/or devices including such layered-substrate and methods for making such devices are also disclosed.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 19, 2015
    Inventors: Jaymin Amin, Alexandre Michel Mayolet, Charles Andrew Paulson, James Joseph Price, Kevin Barry Reiman
  • Publication number: 20150030834
    Abstract: Embodiments are directed to strengthened glass articles comprising a thickness t?1 mm (1000 ?m), an inner region under a central tension CT (in MPa), and at least one compressive stress layer adjacent the inner region and extending within the strengthened glass article from a surface of the strengthened glass article to a depth of layer DOL (in ?m), wherein the strengthened glass article is under a compressive stress at the surface CSs (in MPa), wherein the strengthened glass article is an alkali aluminosilicate glass article comprising 0-5 mol % Li2O, and at least 3 mol % Al2O3, and wherein the DOL?70 ?m, and a CSs/DOL ratio?2.5 MPa/?m.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 29, 2015
    Inventors: Laurence Ralph Morey, Jonathan David Pesansky, Kevin Barry Reiman, Benjamin Allen Stevens, Brina Paul Strines
  • Patent number: 7828480
    Abstract: Disclosed is a thermocouple circuit that exhibits reduced levels of thermocouple drift. The thermocouple is generally comprised of first and second thermoelectric elements formed of first and second thermoelectric materials, respectively. The first and second thermoelectric elements are coupled to an electrically conductive substrate through intermediate first and second tab elements, respectively. The first and second tab elements are preferably formed of the respective first and second thermoelectric materials, and coupled to the substrate in a spaced apart configuration such that the first and second tab elements, are not physically coupled one to the other. Also disclosed are systems and methods for the preparation and use of the thermocouple circuits disclosed herein.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 9, 2010
    Assignee: Corning Incorporated
    Inventors: Lee Martin Adelsberg, John Michael Drosdak, Paul Richard Grzesik, Trudy A Knutson, David Myron Lineman, Kevin Barry Reiman
  • Publication number: 20080175304
    Abstract: Disclosed is a thermocouple circuit that exhibits reduced levels of thermocouple drift. The thermocouple is generally comprised of first and second thermoelectric elements formed of first and second thermoelectric materials, respectively. The first and second thermoelectric elements are coupled to an electrically conductive substrate through intermediate first and second tab elements, respectively. The first and second tab elements are preferably formed of the respective first and second thermoelectric materials, and coupled to the substrate in a spaced apart configuration such that the first and second tab elements, are not physically coupled one to the other. Also disclosed are systems and methods for the preparation and use of the thermocouple circuits disclosed herein.
    Type: Application
    Filed: December 20, 2007
    Publication date: July 24, 2008
    Inventors: Lee Martin Adelsberg, John Michael Drosdak, Paul Richard Grzesik, Trudy A. Knutson, David Myron Lineman, Kevin Barry Reiman