Patents by Inventor Kevin Blankespoor

Kevin Blankespoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12172719
    Abstract: A robot system includes: an upper body section including one or more end-effectors; a lower body section including one or more legs; and an intermediate body section coupling the upper and lower body sections. An upper body control system operates at least one of the end-effectors. The intermediate body section experiences a first intermediate body linear force and/or moment based on an end-effector force acting on the at least one end-effector. A lower body control system operates the one or more legs. The one or more legs experience respective surface reaction forces. The intermediate body section experiences a second intermediate body linear force and/or moment based on the surface reaction forces. The lower body control system operates the one or more legs so that the second intermediate body linear force balances the first intermediate linear force and the second intermediate body moment balances the first intermediate body moment.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: December 24, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Benjamin Stephens, Nicolas Hudson, Yeuhi Abe, Jennifer Barry
  • Patent number: 12139217
    Abstract: An example method may include i) determining a first distance between a pair of feet of a robot at a first time, where the pair of feet is in contact with a ground surface; ii) determining a second distance between the pair of feet of the robot at a second time, where the pair of feet remains in contact with the ground surface from the first time to the second time; iii) comparing a difference between the determined first and second distances to a threshold difference; iv) determining that the difference between determined first and second distances exceeds the threshold difference; and v) based on the determination that the difference between the determined first and second distances exceeds the threshold difference, causing the robot to react.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: November 12, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Alex Perkins, Marco da Silva
  • Patent number: 12128570
    Abstract: An example method may include i) detecting a disturbance to a gait of a robot, where the gait includes a swing state and a step down state, the swing state including a target swing trajectory for a foot of the robot, and where the target swing trajectory includes a beginning and an end; and ii) based on the detected disturbance, causing the foot of the robot to enter the step down state before the foot reaches the end of the target swing trajectory.
    Type: Grant
    Filed: April 12, 2023
    Date of Patent: October 29, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Benjamin Stephens, Marco da Silva
  • Patent number: 12130625
    Abstract: An example implementation includes (i) receiving sensor data that indicates topographical features of an environment in which a robotic device is operating, (ii) processing the sensor data into a topographical map that includes a two-dimensional matrix of discrete cells, the discrete cells indicating sample heights of respective portions of the environment, (iii) determining, for a first foot of the robotic device, a first step path extending from a first lift-off location to a first touch-down location, (iv) identifying, within the topographical map, a first scan patch of cells that encompass the first step path, (v) determining a first high point among the first scan patch of cells; and (vi) during the first step, directing the robotic device to lift the first foot to a first swing height that is higher than the determined first high point.
    Type: Grant
    Filed: June 26, 2023
    Date of Patent: October 29, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Alexander Douglas Perkins, Kevin Blankespoor
  • Publication number: 20240246623
    Abstract: An example method may include i) determining a first distance between a pair of feet of a robot at a first time, where the pair of feet is in contact with a ground surface; ii) determining a second distance between the pair of feet of the robot at a second time, where the pair of feet remains in contact with the ground surface from the first time to the second time; iii) comparing a difference between the determined first and second distances to a threshold difference; iv) determining that the difference between determined first and second distances exceeds the threshold difference; and v) based on the determination that the difference between the determined first and second distances exceeds the threshold difference, causing the robot to react.
    Type: Application
    Filed: February 26, 2024
    Publication date: July 25, 2024
    Inventors: Kevin Blankespoor, Alex Perkins, Marco da Silva
  • Publication number: 20240157573
    Abstract: Example methods and devices for touch-down detection for a robotic device are described herein. In an example embodiment, a computing system may receive a force signal due to a force experienced at a limb of a robotic device. The system may receive an output signal from a sensor of the end component of the limb. Responsive to the received signals, the system may determine whether the force signal satisfies a first threshold and determine whether the output signal satisfies a second threshold. Based on at least one of the force signal satisfying the first threshold or the output signal satisfying the second threshold, the system of the robotic device may provide a touch-down output indicating touch-down of the end component of the limb with a portion of an environment.
    Type: Application
    Filed: January 23, 2024
    Publication date: May 16, 2024
    Inventors: Zachary Jackowski, Kevin Blankespoor, John Aaron Saunders, Francis M. Agresti
  • Publication number: 20240152143
    Abstract: A method for estimating a ground plane of a legged robot includes determining one or more physical contact points of the legged robot based on first sensor information of the legged robot, determining one or more virtual contact points of the legged robot based on second sensor information of the legged robot, determining a ground plane estimation of the ground surface based on both the one or more physical contact points and the one or more virtual contact points, and controlling a pose of the legged robot based on the ground plane estimation.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Inventors: Kevin Blankespoor, Gabriel Nelson, Neil Neville
  • Patent number: 11921508
    Abstract: A method for estimating a ground plane includes receiving a pose of a robotic device with respect to a gravity aligned reference frame, receiving one or more locations of one or more corresponding contact points between the robotic device and a ground surface, and determining a ground plane estimation of the ground surface based on the orientation of the robotic device with respect to the gravity aligned reference frame and the one or more locations of one or more corresponding contact points between the robotic device and the ground surface. The ground plane estimation includes a ground surface contour approximation. The method further includes determining a distance between a body of the robotic device and the determined ground plane estimation and causing adjustment of the pose of the robotic device with respect to the ground surface based on the determined distance and the determined ground plane estimation.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: March 5, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Gabriel Nelson, Neil Neville
  • Patent number: 11911892
    Abstract: Example methods and devices for touch-down detection for a robotic device are described herein. In an example embodiment, a computing system may receive a force signal due to a force experienced at a limb of a robotic device. The system may receive an output signal from a sensor of the end component of the limb. Responsive to the received signals, the system may determine whether the force signal satisfies a first threshold and determine whether the output signal satisfies a second threshold. Based on at least one of the force signal satisfying the first threshold or the output signal satisfying the second threshold, the system of the robotic device may provide a touch-down output indicating touch-down of the end component of the limb with a portion of an environment.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: February 27, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Zachary Jackowski, Kevin Blankespoor, John Aaron Saunders, Francis M. Agresti
  • Publication number: 20230406429
    Abstract: An example implementation involves receiving measurements from an inertial sensor coupled to the robot and detecting an occurrence of a foot of the legged robot making contact with a surface. The implementation also involves reducing a gain value of an amplifier from a nominal value to a reduced value upon detecting the occurrence. The amplifier receives the measurements from the inertial sensor and provides a modulated output based on the gain value. The implementation further involves increasing the gain value from the reduced value to the nominal value over a predetermined duration of time after detecting the occurrence. The gain value is increased according to a profile indicative of a manner in which to increase the gain value of the predetermined duration of time. The implementation also involves controlling at least one actuator of the legged robot based on the modulated output during the predetermined duration of time.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 21, 2023
    Inventors: Kevin Blankespoor, Marco da Silva
  • Publication number: 20230347513
    Abstract: A method for palletizing by a robot includes positioning an object at an initial position adjacent to a target object location, tilting the object at an angle relative to a ground plane, shifting the object in a first direction from the initial position toward a first alignment position, shifting the object in a second direction from the first alignment position toward a second alignment position, and releasing the object from the robot to pivot the object toward the target object location.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Applicant: Boston Dynamics, Inc.
    Inventors: Neil Neville, Kevin Blankespoor, Jennifer Barry, Alexander Douglas Perkins
  • Publication number: 20230333559
    Abstract: An example implementation includes (i) receiving sensor data that indicates topographical features of an environment in which a robotic device is operating, (ii) processing the sensor data into a topographical map that includes a two-dimensional matrix of discrete cells, the discrete cells indicating sample heights of respective portions of the environment, (iii) determining, for a first foot of the robotic device, a first step path extending from a first lift-off location to a first touch-down location, (iv) identifying, within the topographical map, a first scan patch of cells that encompass the first step path, (v) determining a first high point among the first scan patch of cells; and (vi) during the first step, directing the robotic device to lift the first foot to a first swing height that is higher than the determined first high point.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventors: Alexander Douglas Perkins, Kevin Blankespoor
  • Patent number: 11780515
    Abstract: An example implementation involves receiving measurements from an inertial sensor coupled to the robot and detecting an occurrence of a foot of the legged robot making contact with a surface. The implementation also involves reducing a gain value of an amplifier from a nominal value to a reduced value upon detecting the occurrence. The amplifier receives the measurements from the inertial sensor and provides a modulated output based on the gain value. The implementation further involves increasing the gain value from the reduced value to the nominal value over a predetermined duration of time after detecting the occurrence. The gain value is increased according to a profile indicative of a manner in which to increase the gain value of the predetermined duration of time. The implementation also involves controlling at least one actuator of the legged robot based on the modulated output during the predetermined duration of time.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 10, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Marco da Silva
  • Publication number: 20230303193
    Abstract: A robot system includes: an upper body section including one or more end-effectors; a lower body section including one or more legs; and an intermediate body section coupling the upper and lower body sections. An upper body control system operates at least one of the end-effectors. The intermediate body section experiences a first intermediate body linear force and/or moment based on an end-effector force acting on the at least one end-effector. A lower body control system operates the one or more legs. The one or more legs experience respective surface reaction forces. The intermediate body section experiences a second intermediate body linear force and/or moment based on the surface reaction forces. The lower body control system operates the one or more legs so that the second intermediate body linear force balances the first intermediate linear force and the second intermediate body moment balances the first intermediate body moment.
    Type: Application
    Filed: April 26, 2023
    Publication date: September 28, 2023
    Inventors: Kevin Blankespoor, Benjamin Stephens, Nicolas Hudson, Yeuhi Abe, Jennifer Barry
  • Patent number: 11738456
    Abstract: A method for palletizing by a robot includes positioning an object at an initial position adjacent to a target object location, tilting the object at an angle relative to a ground plane, shifting the object in a first direction from the initial position toward a first alignment position, shifting the object in a second direction from the first alignment position toward a second alignment position, and releasing the object from the robot to pivot the object toward the target object location.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: August 29, 2023
    Assignee: BOSTON DYNAMICS, INC.
    Inventors: Neil Neville, Kevin Blankespoor, Jennifer Barry, Alexander Douglas Perkins
  • Publication number: 20230264358
    Abstract: An example method may include i) detecting a disturbance to a gait of a robot, where the gait includes a swing state and a step down state, the swing state including a target swing trajectory for a foot of the robot, and where the target swing trajectory includes a beginning and an end; and ii) based on the detected disturbance, causing the foot of the robot to enter the step down state before the foot reaches the end of the target swing trajectory.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 24, 2023
    Inventors: Kevin Blankespoor, Benjamin Stephens, Marco da Silva
  • Patent number: 11726481
    Abstract: An example implementation includes (i) receiving sensor data that indicates topographical features of an environment in which a robotic device is operating, (ii) processing the sensor data into a topographical map that includes a two-dimensional matrix of discrete cells, the discrete cells indicating sample heights of respective portions of the environment, (iii) determining, for a first foot of the robotic device, a first step path extending from a first lift-off location to a first touch-down location, (iv) identifying, within the topographical map, a first scan patch of cells that encompass the first step path, (v) determining a first high point among the first scan patch of cells; and (vi) during the first step, directing the robotic device to lift the first foot to a first swing height that is higher than the determined first high point.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: August 15, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Alexander Douglas Perkins, Kevin Blankespoor
  • Patent number: 11667343
    Abstract: A robot system includes: an upper body section including one or more end-effectors; a lower body section including one or more legs; and an intermediate body section coupling the upper and lower body sections. An upper body control system operates at least one of the end-effectors. The intermediate body section experiences a first intermediate body linear force and/or moment based on an end-effector force acting on the at least one end-effector. A lower body control system operates the one or more legs. The one or more legs experience respective surface reaction forces. The intermediate body section experiences a second intermediate body linear force and/or moment based on the surface reaction forces. The lower body control system operates the one or more legs so that the second intermediate body linear force balances the first intermediate linear force and the second intermediate body moment balances the first intermediate body moment.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: June 6, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Benjamin Stephens, Nicolas Hudson, Yeuhi Abe, Jennifer Barry
  • Patent number: 11654984
    Abstract: An example method may include i) determining a first distance between a pair of feet of a robot at a first time, where the pair of feet is in contact with a ground surface; ii) determining a second distance between the pair of feet of the robot at a second time, where the pair of feet remains in contact with the ground surface from the first time to the second time; iii) comparing a difference between the determined first and second distances to a threshold difference; iv) determining that the difference between determined first and second distances exceeds the threshold difference; and v) based on the determination that the difference between the determined first and second distances exceeds the threshold difference, causing the robot to react.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: May 23, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Alex Perkins, Marco da Silva
  • Patent number: 11654569
    Abstract: An example method may include i) detecting a disturbance to a gait of a robot, where the gait includes a swing state and a step down state, the swing state including a target swing trajectory for a foot of the robot, and where the target swing trajectory includes a beginning and an end; and ii) based on the detected disturbance, causing the foot of the robot to enter the step down state before the foot reaches the end of the target swing trajectory.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: May 23, 2023
    Assignee: BOSTON DYNAMICS, INC.
    Inventors: Kevin Blankespoor, Benjamin Stephens, Marco da Silva