Patents by Inventor Kevin Bryan Sparks

Kevin Bryan Sparks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8218226
    Abstract: An optical modulator that utilizes Bloch surface plasmon (BSP) effects is disclosed. The BSP optical (BSPO) modulator (10) includes a permittivity-modulated (P-M) grating (20) that can be one-dimensional or two-dimensional. Electro-optic (EO) substrates (30) sandwich the P-M grating. The EO substrates have electrodes (64) arranged thereon, and a voltage source (60) connected to the electrodes is used to provide an applied voltage (V30) via a modulation voltage signals (SM) that switches the modulator. Index-matching layers (40) may be used to mitigate adverse reflection effects. The BSPO modulator allows for normally incident input light (100I) to be modulated directly without having to generate oblique angles of incidence for the input light in order to excite the surface plasmon.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: July 10, 2012
    Assignee: Corning Incorporated
    Inventors: Andrey Kobyakov, Kevin Bryan Sparks, Aramais Zakharian
  • Patent number: 8055110
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular hole-containing region that contains non-periodically disposed holes. The annular hole containing region is doped with at least one dopant selected from fluorine and chlorine. The optical fiber provides low bend loss as well as low heat-induced splice loss.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 8, 2011
    Assignee: Corning Incorporated
    Inventors: Jeffrey Coon, Lisa Larae Hepburn, Ming-Jun Li, Kevin Bryan Sparks
  • Publication number: 20100124396
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular hole-containing region that contains non-periodically disposed holes. The annular hole containing region is doped with at least one dopant selected from fluorine and chlorine. The optical fiber provides low bend loss as well as low heat-induced splice loss.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 20, 2010
    Inventors: Jeffrey Coon, Lisa Larae Hepburn, Ming-Jun Li, Kevin Bryan Sparks
  • Publication number: 20100039693
    Abstract: An optical modulator that utilizes Bloch surface plasmon (BSP) effects is disclosed. The BSP optical (BSPO) modulator (10) includes a permittivity-modulated (P-M) grating (20) that can be one-dimensional or two-dimensional. Electro-optic (EO) substrates (30) sandwich the P-M grating. The EO substrates have electrodes (64) arranged thereon, and a voltage source (60) connected to the electrodes is used to provide an applied voltage (V30) via a modulation voltage signals (SM) that switches the modulator. Index-matching layers (40) may be used to mitigate adverse reflection effects. The BSPO modulator allows for normally incident input light (100I) to be modulated directly without having to generate oblique angles of incidence for the input light in order to excite the surface plasmon.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 18, 2010
    Inventors: Andrey Kobyakov, Kevin Bryan Sparks, Aramais Zakharian