Patents by Inventor Kevin D. Loutherback

Kevin D. Loutherback has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230251268
    Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.
    Type: Application
    Filed: September 8, 2022
    Publication date: August 10, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Phillip J.M. ELMS, Michelle SORKIN, Kevin D. LOUTHERBACK, Randall D. LOWE, Jr.
  • Patent number: 11666912
    Abstract: Methods of sorting T lymphocytes in a microfluidic device are provided. The methods can include flowing a fluid sample comprising T lymphocytes through a region of a microfluidic device that contains an array of posts. The array of posts can be configured to have a critical size (Dc) that separates activated T lymphocytes from naïve T lymphocytes. Also provided are microfluidic devices having an array of posts configured to separate activated T lymphocytes from naïve T lymphocytes, compositions enriched for T lymphocytes, particularly activated T lymphocytes that are known to be reactive to an antigen of interest, and methods of treating subjects suffering from a pathogenic disorder or cancer by administering such compositions.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 6, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin D. Loutherback, Yelena Bronevetsky, Peter J. Beemiller, Xiaohua Wang, Kevin T. Chapman
  • Publication number: 20220250071
    Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.
    Type: Application
    Filed: November 23, 2021
    Publication date: August 11, 2022
    Inventors: Troy A. LIONBERGER, Matthew E. FOWLER, Phillip J. M. ELMS, Kevin D. LOUTHERBACK, Randall D. LOWE, JR., Jian GONG, J. Tanner NEVILL, Gang F. WANG, Gregory G. LAVIEU, John A. TENNEY, Aathavan KARUNAKARAN, Anupam SINGHAL, I-Jong LIN
  • Patent number: 11203018
    Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: December 21, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Troy A. Lionberger, Matthew E. Fowler, Phillip J. M. Elms, Kevin D. Loutherback, Randall D. Lowe, Jr., Jian Gong, J. Tanner Nevill, Gang F. Wang, Gregory G. Lavieu, John A. Tenney, Aathavan Karunakaran, Anupam Singhal, I-Jong Lin
  • Publication number: 20200299351
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to activate T Lymphocytes.
    Type: Application
    Filed: January 15, 2020
    Publication date: September 24, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Peter J. Beemiller, Alexander J. Mastroianni, Shao Ning Pei, Randall D. Lowe, JR., Annamaria Mocciaro, Kevin D. Loutherback, Yelena Bronevetsky, Guido K. Stadler, Andrew W. McFarland, Kevin T. Chapman, Duane Smith, Natalie C. Marks, Amanda L. Goodsell
  • Publication number: 20200139362
    Abstract: Proto-antigen-presenting surfaces and related kits, methods, and uses are provided. The proto-antigen-presenting surface can comprise a plurality of primary activating molecular ligands comprising a major histocompatibility complex (MHC) molecule configured to bind to a T cell receptor (TCR) of a T cell and a plurality of of co-activating molecular ligands each including a TCR co-activating molecule or an adjunct TCR activating molecule, wherein an exchange factor is bound to the MHC molecules. Exchange factors include, e.g., dipeptides such as GL, GF, GR, etc. Proto-antigen-presenting surfaces can be used to rapidly prepare antigen-presenting surfaces comprising one or more peptide antigens of interest by contacting the proto-antigen-presenting surface with one or more peptide antigens so as to displace the exchange factor. As such, the disclosure facilitates rapid evaluation of the immunogenicity of peptide antigens for activating T lymphocytes.
    Type: Application
    Filed: October 17, 2019
    Publication date: May 7, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Peter J. BEEMILLER, Alexander J. MASTROIANNI, Shao Ning PEI, Randall D. LOWE, Jr., Annamaria MOCCIARO, Kevin D. LOUTHERBACK, Yelena BRONEVETSKY, Guido K. STADLER, Andrew W. MCFARLAND, Kevin T. CHAPMAN, Duane SMITH, Natalie C. MARKS, Amanda L. GOODSELL
  • Publication number: 20190283026
    Abstract: Methods of sorting T lymphocytes in a microfluidic device are provided. The methods can include flowing a fluid sample comprising T lymphocytes through a region of a microfluidic device that contains an array of posts. The array of posts can be configured to have a critical size (Dc) that separates activated T lymphocytes from naïve T lymphocytes. Also provided are microfluidic devices having an array of posts configured to separate activated T lymphocytes from naïve T lymphocytes, compositions enriched for T lymphocytes, particularly activated T lymphocytes that are known to be reactive to an antigen of interest, and methods of treating subjects suffering from a pathogenic disorder or cancer by administering such compositions.
    Type: Application
    Filed: January 22, 2019
    Publication date: September 19, 2019
    Inventors: Kevin D. Loutherback, Yelena Bronevetsky, Peter J. Beemiller, Xiaohua Wang, Kevin T. Chapman
  • Publication number: 20190240665
    Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.
    Type: Application
    Filed: October 15, 2018
    Publication date: August 8, 2019
    Inventors: Troy A. LIONBERGER, Matthew E. FOWLER, Phillip J. M. ELMS, Kevin D. LOUTHERBACK, Randall D. LOWE, JR., Jian GONG, Tanner J. NEVILL, Gang F. WANG, Gregory G. LAVIEU, John A. TENNEY, Aathavan KARUNAKARAN