Patents by Inventor Kevin D. Moran

Kevin D. Moran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10825976
    Abstract: A thermoelectric device (20) and a method for manufacturing and using the same are disclosed. The thermoelectric device (20) includes a hot shoe (24) and a cold shoe (28) disposed about the hot shoe. A heat conducting member (32) formed of a thermoelectric material extends between the hot shoe (24) and the cold shoe (28) and generates electricity in response to a temperature difference therebetween. The hot shoe (24) is heated and expands at a greater rate than the cold shoe (28) does during operation. The structural and spatial relationship of the hot shoe (24) and the cold shoe (28) maintains the thermoelectric material of the heat conducting member (32) in compression during operation of the thermoelectric device (20).
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: November 3, 2020
    Assignee: Board of Trustees of Michigan State University
    Inventors: Edward J. Timm, Harold J. Schock, Guoming G. Zhu, Trevor Ruckle, Kevin D. Moran
  • Patent number: 10221827
    Abstract: An ionization detector that reduces the filtering effects of the ignition coil inductances by shorting an inductance of a primary winding of the ignition coil. The ionization detector includes a bias voltage source and an inductance control switch. The bias voltage source supplies electric voltage across an electric gap of a spark plug for detecting ionization within the combustion chamber. The inductance control switch is electrically parallel with a primary winding of an ignition coil and is operable to short an inductance of the primary winding.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: March 5, 2019
    Assignee: Board of Trustees of Michigan State University
    Inventors: Guoming G. Zhu, Kevin D. Moran
  • Publication number: 20180223791
    Abstract: An ionization detector that reduces the filtering effects of the ignition coil inductances by shorting an inductance of a primary winding of the ignition coil. The ionization detector includes a bias voltage source and an inductance control switch. The bias voltage source supplies electric voltage across an electric gap of a spark plug for detecting ionization within the combustion chamber. The inductance control switch is electrically parallel with a primary winding of an ignition coil and is operable to short an inductance of the primary winding.
    Type: Application
    Filed: August 11, 2016
    Publication date: August 9, 2018
    Applicant: Board of Trustees of Michigan State University
    Inventors: Guoming G. ZHU, Kevin D. MORAN
  • Publication number: 20170222114
    Abstract: A thermoelectric device (20) and a method for manufacturing and using the same are disclosed. The thermoelectric device (20) includes a hot shoe (24) and a cold shoe (28) disposed about the hot shoe. A heat conducting member (32) formed of a thermoelectric material extends between the hot shoe (24) and the cold shoe (28) and generates electricity in response to a temperature difference therebetween. The hot shoe (24) is heated and expands at a greater rate than the cold shoe (28) does during operation. The structural and spatial relationship of the hot shoe (24) and the cold shoe (28) maintains the thermoelectric material of the heat conducting member (32) in compression during operation of the thermoelectric device (20).
    Type: Application
    Filed: August 12, 2015
    Publication date: August 3, 2017
    Applicant: Board of Trustees of Michigan State University
    Inventors: Edward J. TIMM, Harold J. SCHOCK, Guoming G. ZHU, Trevor RUCKLE, Kevin D. MORAN
  • Patent number: 7293554
    Abstract: A device to control the charging rate of an ignition coil for an internal combustion spark ignition engine. The device controls the turn-on rate of the primary coil by slew-rate limiting using switching devices and a Miller-effect capacitor in order to reduce secondary oscillation magnitudes originated by a sharp transition of the controlling switch.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: November 13, 2007
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Kevin D. Moran, Guoming G. Zhu, Michael T. Nation
  • Patent number: 7290442
    Abstract: A robust multi-criteria minimum timing for the best torque (MBT) timing estimation method and apparatus utilizes different ionization signal waveforms that are generated under different engine operating conditions. The MBT timing criteria is calculated based upon both ionization and analog derivative ionization. Multiple MBT timing criteria are determined and combined to increase the reliability and robustness of MBT timing estimation based upon spark plug ionization signal waveforms. In a preferred embodiment, a combination of the MBT timing estimation criteria comprises a maximum flame acceleration location, a 50% burn location, and a second peak location.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: November 6, 2007
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Guoming G. Zhu, Chao F. Daniels, Kevin D. Moran
  • Patent number: 7251571
    Abstract: In a first embodiment, the present invention is a method of detecting an open secondary winding, including the steps of enabling an integrator, resetting the integrator, detecting an ionization current, integrating the ionization current over a spark window, comparing the integrated ionization current with a threshold, and setting an open secondary flag if the integrated ionization current is below the threshold. In another preferred embodiment, the invention is a method of detecting an open secondary winding by measuring spark duration including the steps of comparing an ionization signal with a first threshold, measuring the spark duration when the ionization signal is greater than the first threshold, comparing said spark duration with a second threshold, and setting an open secondary flag.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: July 31, 2007
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Guoming G. Zhu, Kevin D. Moran
  • Patent number: 7197913
    Abstract: This feature of the present invention comprises a method, apparatus, and system for detecting and conditioning an ionization current signal. In one embodiment of the invention, an analog signal conditioning circuit detects and processes the ionization signal. The analog signal conditioning circuit uses a signal isolator having an input and an output, an amplifier having a first and a second input, and a first and a second output, wherein the first input operably connected to the signal isolator output, a peak detector having a first and a second input, and an output, wherein the first input is operably connected to the first output of the amplifier, and an integrator having a first and a second input, and an output, wherein the first input is operably connected to the second output of the amplifier.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: April 3, 2007
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Guoming G. Zhu, Kevin D. Moran
  • Patent number: 7063079
    Abstract: Two embodiments of an integrated ionization detection circuit and ignition coil driver, an ASIC and a single electronic package, are disclosed. The apparatuses reduce the cost and complexity of an in-cylinder ionization detection system by combining like functionality into one ASIC or electronic module easing packaging constraints. In both embodiments, a current sink is used. The current sink removes noise in the form of voltage splices. The voltage spikes are high voltage, but of short duration. The current sink prevents these spikes from turning on the IGBT. However, the current sink allows the IGBT command signal to pass. This device also comprises a switch whereby ionization current and coil primary current are multiplexed.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: June 20, 2006
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Garlan J. Huberts, Michael T. Nation, Guoming G. Zhu, Kevin D. Moran, Bruce Wang, Kenneth L. Gould
  • Patent number: 7005855
    Abstract: The present invention is directed to a dual charge rate power supply circuit and method for ionization detection. The circuit includes a first diode, first and second capacitors, and first and second current paths. The first diode includes an anode operably connected to a first end of a primary winding. The first capacitor has a second end operably connected to ground and the second capacitor has a first end operably connected to the cathode of the first diode as well as a second end operably connected to ground. The first and second current paths are operably connected between the first and second capacitors and include a second diode, a parallel combination of a first resistor and a third diode, and a second resistor. The first diode is operably connected in parallel with the first capacitor.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 28, 2006
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Guoming G. Zhu, Kevin D. Moran
  • Patent number: 6951201
    Abstract: In a first preferred embodiment, the present feature of the invention multiplexes both the ionization and driver current feedback signals into one signal, thus reducing cost and making coil packaging easier. The multiplexed signal first outputs the ionization detection signal and then replaces the ionization signal with the charge current feedback signal when the charge command Vin is enabled. In other words, the multiplexed feedback signal outputs the ionization feedback signal and switches to the charge current feedback signal when the charge command Vin is active. In a second preferred embodiment, the present feature of the invention comprises a method and apparatus to multiplex the ignition driver gate signal with both the ignition coil charge current feedback signal and the ionization signal, thus reducing the package pin count by two.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: October 4, 2005
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Guoming G. Zhu, Michael T. Nation, Bruce Wang, Kenneth L. Gould, Kevin D. Moran, Garlan J. Huberts
  • Patent number: 6922057
    Abstract: A charge pump is used to supply current to the ionization detection circuit. To detect in-cylinder ions generated during the combustion process, a DC bias voltage needs to be applied. There are two ways to generate the DC bias: conventional DC power supply (large electronics) and capacitor charges by primary or secondary flyback voltage (high voltage capacitor). Typically, flyback voltage is used to charge the capacitor which supplies current to the ionization detection circuit. This necessitates the use of high voltage capacitors. Generally, ceramic capacitors are used. However, as temperature fluctuates, the board that the capacitor is mounted on can flex, causing the ceramic capacitor to crack. This invention proposes to use a high voltage charge pump to provide enough DC bias voltage for measuring ionization current. In a preferred embodiment, a model number M1C4827 EL driver is used in the charge pump circuit.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: July 26, 2005
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Guoming G. Zhu, Michael T. Nation, Bruce Wang, Kenneth L. Gould, Garlan J. Huberts, Kevin D. Moran
  • Patent number: 6883509
    Abstract: Internal combustion engine (ICE) on-plug ignition coils with transistor drivers located in powertrain control modules (PCM) or other remote locations are prone to high electrical and magnetic interference (EMI) emissions and are subject to interference from other components due to long connecting wires. Ionization detection circuits have even greater sensitivity to EMI because of their very low signal current levels (mioroampere). The present feature of the invention integrates both the coil driver transistor and ionization detection circuits into the on-plug ignition coil. By placing the circuit on top or on the side of the coil, the connection distance from the circuit to the secondary winding is minimized. Thus, the circuit is less susceptible to electrical and electromagnetic noise.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: April 26, 2005
    Assignee: Visteon Global Technologies, Inc.
    Inventors: David L. Porter, Garlan J. Huberts, Constantine Panagos, Guoming G. Zhu, Michael T. Nation, Bruce Wang, Kenneth L. Gould, Kevin D. Moran
  • Publication number: 20040084021
    Abstract: In a first preferred embodiment, the present feature of the invention multiplexes both the ionization and driver current feedback signals into one signal, thus reducing cost and making coil packaging easier. The multiplexed signal first outputs the ionization detection signal and then replaces the ionization signal with the charge current feedback signal when the charge command Vin is enabled. In other words, the multiplexed feedback signal outputs the ionization feedback signal and switches to the charge current feedback signal when the charge command Vin is active. In a second preferred embodiment, the present feature of the invention comprises a method and apparatus to multiplex the ignition driver gate signal with both the ignition coil charge current feedback signal and the ionization signal, thus reducing the package pin count by two.
    Type: Application
    Filed: June 11, 2003
    Publication date: May 6, 2004
    Inventors: Guoming G. Zhu, Michael T. Nation, Bruce Wang, Kenneth L. Gould, Kevin D. Moran, Garlan J. Huberts
  • Publication number: 20040085068
    Abstract: In this feature of the present invention a charge pump is used to supply current to the ionization detection circuit. To detect in-cylinder ions generated during the combustion process, a DC bias voltage needs to be applied. There are two ways to generate the DC bias: conventional DC power supply (large electronics) and capacitor charges by primary or secondary flyback voltage (high voltage capacitor). Typically, flyback voltage is used to charge the capacitor which supplies current to the ionization detection circuit. This necessitates the use of high voltage capacitors. Generally, ceramic capacitors are used. However, as temperature fluctuates, the board that the capacitor is mounted on can flex, causing the ceramic capacitor to crack. This invention proposes to use a high voltage charge pump to provide enough DC bias voltage for measuring ionization current. In a preferred embodiment, a model number MIC4827 EL driver is used in the charge pump circuit.
    Type: Application
    Filed: June 11, 2003
    Publication date: May 6, 2004
    Inventors: Guoming G. Zhu, Michael T. Nation, Bruce Wang, Kenneth L. Gould, Garlan J. Huberts, Kevin D. Moran
  • Publication number: 20040084034
    Abstract: This feature of the present invention comprises two embodiments of an integrated ionization detection circuit and ignition coil driver according to the present invention, an ASIC and a single electronic package. The apparatuses reduce the cost and complexity of an in-cylinder ionization detection system by combining like functionality into one ASIC or electronic module easing packaging constraints. In both embodiments, a current sink is used. The current sink removes noise in the form of voltage spikes. The voltage spikes are high voltage, but of short duration. The current sink prevents these spikes from turning on the IGBT. However, the current sink allows the IGBT command signal to pass. This feature of the present invention also comprises a switch whereby ionization current and coil primary current are multiplexed.
    Type: Application
    Filed: June 11, 2003
    Publication date: May 6, 2004
    Inventors: Garlan J. Huberts, Michael T. Nation, Guoming G. Zhu, Kevin D. Moran, Bruce Wang, Kenneth L. Gould
  • Publication number: 20040084036
    Abstract: Internal combustion engine (ICE) on-plug ignition coils with transistor drivers located in powertrain control modules (PCM) or other remote locations are prone to high electrical and magnetic interference (EMI) emissions and are subject to interference from other components due to long connecting wires. Ionization detection circuits have even greater sensitivity to EMI because of their very low signal current levels (microampere). The present feature of the invention integrates both the coil driver transistor and ionization detection circuits into the on-plug ignition coil. In a preferred embodiment, parts rated at 140 degrees centigrade are used in both the coil driver transistor and the ionization circuits which are located on the coil to address temperature and thermal shock concerns. Additionally, parts rated at 20 G are used in both the coil driver transistor and the ionization circuits to address vibration concerns.
    Type: Application
    Filed: June 11, 2003
    Publication date: May 6, 2004
    Inventors: David L. Porter, Garlan J. Huberts, Constantine Panagos, Guoming G. Zhu, Michael T. Nation, Bruce Wang, Kenneth L. Gould, Kevin D. Moran