Patents by Inventor Kevin D. Wyndham

Kevin D. Wyndham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240082820
    Abstract: The present disclosure pertains to core-shell particles that are superficially porous, polymer-based, and include organic-inorganic materials. In various embodiments, a non-porous polymer core is surface modified. In various embodiments, a non-porous hybrid organic-inorganic material is in contact with the modified surface of the core, and a porous hybrid organic-inorganic material is in contact with the non-porous hybrid organic-inorganic material. The present disclosure pertains to chromatographic separation devices that comprise such core-shell particles.
    Type: Application
    Filed: February 24, 2023
    Publication date: March 14, 2024
    Applicant: Waters Technologies Corporation
    Inventors: Mingcheng Xu, Darryl W. Brousmiche, Daniel P. Walsh, Nicole L. Lawrence, Kevin D. Wyndham
  • Publication number: 20240082821
    Abstract: The present disclosure pertains to non-porous composite particles that are non-porous, polymer-based, organic-inorganic materials. In various embodiments, a non-porous polymer core is surface modified. In various embodiments, a non-porous hybrid organic-inorganic material is disposed on the modified surface of the core. The present disclosure pertains to chromatographic separation devices that comprise such non-porous composite particles.
    Type: Application
    Filed: February 24, 2023
    Publication date: March 14, 2024
    Applicant: Waters Technologies Corporation
    Inventors: Mingcheng Xu, Darryl W. Brousmiche, Daniel P. Walsh, Nicole L. Lawrence, Kevin D. Wyndham
  • Patent number: 11905548
    Abstract: An immobilized enzymatic reactor can include a wall defining a chamber having an inlet and an outlet; a solid stationary phase covalently linked to an enzyme and disposed within the chamber; and a pressure modulator in a fluid communication with the chamber and adapted to support continuous flow of a liquid sample comprising a polymer analyte through the inlet, over the solid stationary phase, and out of the outlet under a pressure between about 2,500 and 35,000 psi. In one example, the solid stationary phase includes inorganic/organic hybrid particles in an ultra performance liquid chromatography system, the enzyme is a protease, and the polymer analyte is a polypeptide. The immobilized enzymatic reactor can prepare an analyte for applications such as for hydrogen deuterium exchange mass spectrometry.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: February 20, 2024
    Assignee: Waters Technologies Corporation
    Inventors: Joomi Ahn, Moon Chul Jung, Kevin D. Wyndham
  • Publication number: 20230173406
    Abstract: The present invention provides novel chromatographic materials, e.g., for chromatographic separations, processes for its preparation and separations devices containing the chromatographic material; separations devices, chromatographic columns and kits comprising the same; and methods for the preparation thereof. The chromatographic materials of the invention are superficially porous chromatographic particulate materials comprising sized less than 2 microns.
    Type: Application
    Filed: January 13, 2023
    Publication date: June 8, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Jacob N. Fairchild, Pamela C. Iraneta, Stephen J. Shiner, Darryl W. Brousmiche, Daniel P. Walsh
  • Publication number: 20230101326
    Abstract: In various embodiments, the present disclosure pertains to core-shell particles that comprise a porous hybrid organic-inorganic shell disposed on a surface-modified non-porous polymer particle core. In some embodiments, the present disclosure pertains to chromatographic separation devices that comprise such core-shell particles. In some embodiments, the present disclosure pertains to chromatographic methods that comprise: (a) loading a sample onto a chromatographic column comprising such core-shell particles and (b) flowing a mobile phase through the column.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 30, 2023
    Applicant: Waters Technologies Corporation
    Inventors: MingCheng Xu, Darryl W. Brousmiche, Daniel P. Walsh, Nicole L. Lawrence, Kevin D. Wyndham
  • Publication number: 20230088954
    Abstract: An immobilized enzymatic reactor can include a wall defining a chamber having an inlet and an outlet; a solid stationary phase covalently linked to an enzyme and disposed within the chamber; and a pressure modulator in a fluid communication with the chamber and adapted to support continuous flow of a liquid sample comprising a polymer analyte through the inlet, over the solid stationary phase, and out of the outlet under a pressure between about 2,500 and 35,000 psi. In one example, the solid stationary phase includes inorganic/organic hybrid particles in an ultra performance liquid chromatography system, the enzyme is a protease, and the polymer analyte is a polypeptide. The immobilized enzymatic reactor can prepare an analyte for applications such as for hydrogen deuterium exchange mass spectrometry.
    Type: Application
    Filed: August 4, 2022
    Publication date: March 23, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Joomi Ahn, Moon Chul Jung, Kevin D. Wyndham
  • Patent number: 11597789
    Abstract: The invention relates to poly-amide bonded hydrophilic interaction chromatography (HILIC) stationary phases and novel HILIC methods for use in the characterization of large biological molecules modified with polar groups, known to those skilled in the art as glycans. The invention particularly provides novel, poly-amide bonded materials designed for efficient separation of large biomolecules, e.g. materials having a large percentage of larger pores (i.e. wide pores). Furthermore, the invention advantageously provides novel HILIC methods that can be used in combination with the stationary phase materials described herein to effectively separate protein and peptide glycoforms by eliminating previously unsolved problems, such as on-column aggregation of protein samples, low sensitivity of chromatographic detection of the glycan moieties, and low resolution of peaks due to restricted pore diffusion and long intra/inter-particle diffusion distances.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: March 7, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Stephan M. Koza, Pamela C. Iraneta, KEvin D. Wyndham
  • Patent number: 11577179
    Abstract: The present invention provides methods for performing supercritical fluid chromatography comprising loading a sample to be separated by supercritical fluid chromatography onto a stationary phase comprising a spherical, monodisperse, core-shell particulate material comprising a nonporous core and one or more layers of a porous shell material surrounding the core, wherein the particles are sized less than 2 microns; and performing supercritical fluid chromatography to separate the sample.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: February 14, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Jacob N. Fairchild, Pamela C. Iraneta, Stephen J. Shiner, Darryl W. Brousmiche, Daniel P. Walsh
  • Publication number: 20230041546
    Abstract: The present invention provides novel chromatographic materials, e.g., for chromatographic separations, processes for its preparation and separations devices containing the chromatographic material; separations devices, chromatographic columns and kits comprising the same; and methods for the preparation thereof. The chromatographic materials of the invention are chromatographic materials comprising having a narrow particle size distribution.
    Type: Application
    Filed: September 16, 2022
    Publication date: February 9, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Beatrice Muriithi
  • Patent number: 11478775
    Abstract: The present invention provides novel chromatographic materials, e.g., for chromatographic separations, processes for its preparation and separations devices containing the chromatographic material; separations devices, chromatographic columns and kits comprising the same; and methods for the preparation thereof. The chromatographic materials of the invention are chromatographic materials comprising having a narrow particle size distribution.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: October 25, 2022
    Assignee: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Beatrice W. Muriithi
  • Patent number: 11439977
    Abstract: The present invention provides novel chromatographic materials, e.g., for chromatographic separations, processes for their preparation and separations devices containing the chromatographic materials. The preparation of the inorganic/organic hybrid materials of the invention wherein a surrounding material is condensed on a superficially porous hybrid core material will allow for families of different hybrid packing materials to be prepared from a single core hybrid material. Differences in hydrophobicity, ion-exchange capacity, chemical stability, surface charge or silanol activity of the surrounding material may be used for unique chromatographic separations of small molecules, carbohydrates, antibodies, whole proteins, peptides, and/or DNA.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: September 13, 2022
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Nicole L. Lawrence, Beatrice W. Muriithi, Kevin D Wyndham
  • Publication number: 20220280909
    Abstract: Novel sorbents, devices, kits and methods useful for sample treatment are disclosed herein.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Kevin D. Wyndham, Nicole L. Lawrence, Jacob N. Fairchild, Bonnie Alden
  • Patent number: 11434517
    Abstract: An immobilized enzymatic reactor can include a wall defining a chamber having an inlet and an outlet; a solid stationary phase covalently linked to an enzyme and disposed within the chamber; and a pressure modulator in fluid communication with the chamber and adapted to support continuous flow of a liquid sample comprising a polymer analyte through the inlet, over the solid stationary phase, and out of the outlet under a pressure between about 2,500 and 35,000 psi. In one example, the solid stationary phase includes inorganic/organic hybrid particles in an ultra performance liquid chromatography system, the enzyme is a protease, and the polymer analyte is a polypeptide. The immobilized enzymatic reactor can prepare an analyte for applications such as for hydrogen deuterium exchange mass spectrometry.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 6, 2022
    Assignee: Waters Technologies Corporation
    Inventors: Joomi Ahn, Moon Chul Jung, Kevin D. Wyndham
  • Patent number: 11426707
    Abstract: Novel porous materials comprising nanoparticles, use in chromatographic separations, processes for its preparation, and separations devices containing the chromatographic material are described by the instant invention. In particular, the disclosure describes porous inorganic/organic hybrid particles embedded with nanoparticles selected from oxides or nitrides of the following: silicon carbide, aluminum, diamond, cerium, carbon black, carbon nanotubes, zirconium, barium, cerium, cobalt, copper, europium, gadolinium, iron, nickel, samarium, silicon, silver, titanium, zinc, boron, and mixtures thereof.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: August 30, 2022
    Assignee: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Nicole L. Lawrence
  • Patent number: 11376561
    Abstract: Sorbents, devices, kits and methods useful for sample treatment are disclosed herein. In particular embodiments, described are inorganic/organic hybrid sorbent particles comprising (a) a core region that comprises a silica component and (b) a surface region that comprises an organic copolymer comprising at least one hydrophobic organic monomer and at least one hydrophilic organic monomer.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: July 5, 2022
    Assignee: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Kevin D. Wyndham, Nicole L. Lawrence, Jacob N. Fairchild, Bonnie A. Alden
  • Patent number: 11291974
    Abstract: The present invention provides novel chromatographic materials, e.g., for chromatographic separations, processes for their preparation and separations devices containing the chromatographic materials. The preparation of the inorganic/organic hybrid materials of the invention wherein a surrounding material is condensed on a porous hybrid core material will allow for families of different hybrid packing materials to be prepared from a single core hybrid material. Differences in hydrophobicity, ion-exchange capacity, surface charge or silanol activity of the surrounding material may be used for unique chromatographic separations of small molecules, carbohydrates, antibodies, whole proteins, peptides, and/or DNA.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 5, 2022
    Assignee: Waters Technologies Corporation
    Inventor: Kevin D. Wyndham
  • Publication number: 20220034852
    Abstract: The invention relates to poly-amide bonded hydrophilic interaction chromatography (HILIC) stationary phases and novel HILIC methods for use in the characterization of large biological molecules modified with polar groups, known to those skilled in the art as glycans. The invention particularly provides novel, poly-amide bonded materials designed for efficient separation of large biomolecules, e.g. materials having a large percentage of larger pores (i.e. wide pores). Furthermore, the invention advantageously provides novel HILIC methods that can be used in combination with the stationary phase materials described herein to effectively separate protein and peptide glycoforms by eliminating previously unsolved problems, such as on-column aggregation of protein samples, low sensitivity of chromatographic detection of the glycan moieties, and low resolution of peaks due to restricted pore diffusion and long intra/inter-particle diffusion distances.
    Type: Application
    Filed: July 8, 2021
    Publication date: February 3, 2022
    Inventors: Matthew A. Lauber, Stephan M. Koza, Pamela C. Iraneta, Kevin D. Wyndham
  • Patent number: 11161065
    Abstract: A liquid chromatography system, includes a fluidic flow path, a chromatography column located in the fluidic flow path, a filtration device located in the fluidic flow path before the chromatography column, the filtration device including a housing having a fluidic inlet, a fluidic outlet, wherein at least a portion of the fluidic flow path is located between the fluidic inlet and the fluidic outlet and at least one filter disposed in the portion of the fluidic flow path, wherein the at least one filter is made of a micromachined material. Liquid chromatography filtration methods are further disclosed.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 2, 2021
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Kevin D. Wyndham, Moon Chul Jung, Abhijit Tarafder, Wade P. Leveille, Sr.
  • Publication number: 20210331138
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 28, 2021
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Patent number: 11092574
    Abstract: The invention relates to poly-amide bonded hydrophilic interaction chromatography (HILIC) stationary phases and novel HILIC methods for use in the characterization of large biological molecules modified with polar groups, known to those skilled in the art as glycans. The invention particularly provides novel, poly-amide bonded materials designed for efficient separation of large biomolecules, e.g. materials having a large percentage of larger pores (i.e. wide pores). Furthermore, the invention advantageously provides novel HILIC methods that can be used in combination with the stationary phase materials described herein to effectively separate protein and peptide glycoforms by eliminating previously unsolved problems, such as on-column aggregation of protein samples, low sensitivity of chromatographic detection of the glycan moieties, and low resolution of peaks due to restricted pore diffusion and long intra/inter-particle diffusion distances.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: August 17, 2021
    Assignee: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Stephan M. Koza, Pamela C. Iraneta, Kevin D. Wyndham