Patents by Inventor Kevin Drost

Kevin Drost has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10668201
    Abstract: A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: June 2, 2020
    Assignees: Oregon State University, Outset Medical, Inc.
    Inventors: Julie S. Wrazel, James R. Curtis, Ladislaus Nonn, Richard B. Peterson, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison, M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, Bruce W. Johnson, Alana Anderson, Eric K. Anderson
  • Patent number: 10619890
    Abstract: A thermal receiver, such as a solar flux thermal receiver, is disclosed comprising a modular arrangement of arrayed microchannels or micropins to heat a working fluid by heat transfer. Disclosed solar receivers provide a much higher solar flux and consequently a significant reduction in thermal losses, size, and cost, relative to known receivers. Unit cell receivers can be numbered up and combined in parallel to form modules, and modules combined to form full scale receivers.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: April 14, 2020
    Assignees: Oregon State University, The Regents of the University of California
    Inventors: Monte Kevin Drost, Sourabh Apte, Thomas L'Estrange, Vinod Narayanan, Charles Rymal, Eric Truong, Erfan Rasouli, Kyle Ryan Zada, Brian M. Fronk
  • Patent number: 10618826
    Abstract: Disclosed herein are embodiments of a microscale-based device suitable for purifying fluid, and method of using the device. In particular disclosed embodiments, an electrode layer comprising an enhanced surface area electrode material that has multiple extensions covered in a conductive material are used within the device. The device comprises one or more main flow pathways and one or more side channels. The flow dynamics of the device may be controlled in order to remove contaminants from the fluid. The extensions of the enhanced surface area electrode material are positioned on the surface of the pathways and also may be positioned within the side channels.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: April 14, 2020
    Assignee: Oregon State University
    Inventors: Goran N. Jovanovic, Chris Loeb, Thomas Lindner, Kevin Drost
  • Publication number: 20180126056
    Abstract: A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Applicants: Oregon State University, Outset Medical, Inc.
    Inventors: Julie S. Wrazel, James R. Curtis, Ladislaus Nonn, Richard B. Peterson, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison, M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, Bruce W. Johnson, Alana Anderson, Eric K. Anderson
  • Patent number: 9895480
    Abstract: A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: February 20, 2018
    Assignees: Oregon State University, Outset Medical, Inc.
    Inventors: Julie S. Wrazel, James R. Curtis, Ladislaus Nonn, Richard B. Peterson, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison, M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, Bruce W. Johnson, Alana Anderson, Eric K. Anderson
  • Publication number: 20180010824
    Abstract: A thermal receiver, such as a solar flux thermal receiver, is disclosed comprising a modular arrangement of arrayed microchannels or micropins to heat a working fluid by heat transfer. Disclosed solar receivers provide a much higher solar flux and consequently a significant reduction in thermal losses, size, and cost, relative to known receivers. Unit cell receivers can be numbered up and combined in parallel to form modules, and modules combined to form full scale receivers.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 11, 2018
    Applicants: Oregon State University, Regents of the University of California
    Inventors: Monte Kevin Drost, Sourabh Apte, Thomas L'Estrange, Vinod Narayanan, Charles Rymal, Eric Truong, Erfan Rasouli, Kyle Ryan Zada, Brian M. Fronk
  • Publication number: 20160289098
    Abstract: Disclosed herein are embodiments of a microscale-based device suitable for purifying fluid, and method of using the device. In particular disclosed embodiments, an electrode layer comprising an enhanced surface area electrode material that has multiple extensions covered in a conductive material are used within the device. The device comprises one or more main flow pathways and one or more side channels. The flow dynamics of the device may be controlled in order to remove contaminants from the fluid. The extensions of the enhanced surface area electrode material are positioned on the surface of the pathways and also may be positioned within the side channels.
    Type: Application
    Filed: June 10, 2016
    Publication date: October 6, 2016
    Inventors: Goran N. Jovanovic, Chris Loeb, Thomas Lindner, Kevin Drost
  • Publication number: 20150010874
    Abstract: A miniaturized power generation device and method are provided. In one configuration a microscale combustor and heat exchanger may include several repeating unit cells each of which performs combustion, recuperation, and heat exchange. Catalytic combustion may occur inside at least one combustion and one recuperator channel. Specific features may be added to reduce heat loss and pressure drop.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Inventors: Mohammad Ghazvini, Vinod Narayanan, Monte Kevin Drost, Brian K. Paul
  • Publication number: 20140299545
    Abstract: A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Applicants: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon, Home Dialysis Plus, Ltd.
    Inventors: Julie S. Wrazel, James R. Curtis, Ladislaus Nonn, Richard B. Peterson, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison, M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, Bruce W. Johnson, Alana Anderson, Eric K. Anderson
  • Patent number: 8801922
    Abstract: A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: August 12, 2014
    Assignees: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University, Home Dialysis Plus, ltd.
    Inventors: Julie S. Wrazel, James R. Curtis, Ladislaus Nonn, Richard B. Peterson, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison, M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, Bruce W. Johnson, Alana Warner-Tuhy, Eric K. Anderson
  • Publication number: 20100326914
    Abstract: The present disclosure concerns embodiments of a microfluidic transfer device. The device mitigates risk of cross contamination between working fluids and is amenable to high-volume, low-cost manufacturing techniques. The device may be configured for mass transfer, heat transfer, or both. For instance, certain disclosed embodiments incorporate semi-permeable membranes to transfer target substances from one fluid to another. Moreover, the device may incorporate both heat and mass transfer components.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 30, 2010
    Inventors: M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, James R. Curtis, Bruce W. Johnson, Alana Warner-Tuhy, Eric K. Anderson, Julie S. Wrazel
  • Publication number: 20100326916
    Abstract: A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 30, 2010
    Inventors: Julie Wrazel, James R. Curtis, Ladislaus Nonn, Richard B. Peterson, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison, M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, Bruce W. Johnson, Alana Warner-Tuhy, Eric K. Anderson
  • Patent number: 6974496
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: December 13, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Publication number: 20050126211
    Abstract: Microchannel or fractal plate desorption retains the advantage of high-flux, thin-film desorption without using membranes and allows for lightweight, compact desorbers for either LiBr and water or ammonia and water. Working embodiments of the process comprise providing a droplet desorber, feeding a multicomponent fluid mixture comprising at least a first fluid and a second fluid to the desorber, and performing a desorption process on the mixture using the desorber. The primary fluid mixtures used were ammonia and water, and aqueous lithium bromide. Various working embodiments of desorbers are disclosed, including several desorbers comprising plural, substantially straight, substantially parallel microchannels in an array, and a fractal plate desorber, such as a bifurcating fractal plate.
    Type: Application
    Filed: December 15, 2004
    Publication date: June 16, 2005
    Inventors: Kevin Drost, Vinod Narayanan, Deborah Pence
  • Patent number: 6746515
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 8, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Ward E. TeGrotenhuis, Kevin Drost, Vilayanur V. Vishwanathan
  • Publication number: 20040081871
    Abstract: A fuel cell preferably includes a fuel cell stack for receiving reactants and conducting a reaction to produce an electrical current, a catalytic combustor for combusting reactants that pass un-reacted through the fuel cell stack, and a heat exchanger for exchanging heat from an exhaust of the catalytic combustor to the reactants received by the fuel cell stack.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 29, 2004
    Inventors: Daniel A. Kearl, Richard B. Peterson, Monte Kevin Drost
  • Publication number: 20040069144
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 15, 2004
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Patent number: 6630012
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: October 7, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Publication number: 20030015093
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: April 30, 2001
    Publication date: January 23, 2003
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Publication number: 20020194990
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: April 29, 2002
    Publication date: December 26, 2002
    Inventors: Robert S. Wegeng, Scot D. Rassat, Ward E. TeGrotenhuis, Kevin Drost, Vilayanur V. Vishwanathan