Patents by Inventor Kevin E. Shields

Kevin E. Shields has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898954
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. Deep learning techniques are brought to bear on the camera output to increase speed, accuracy and reliability.
    Type: Grant
    Filed: June 22, 2019
    Date of Patent: February 13, 2024
    Assignee: Owl biomedical, Inc.
    Inventors: John S. Foster, Mark A. Naivar, Kevin E. Shields, Daryl W. Grummitt, Lily Li, Yareeve Zemel
  • Publication number: 20220260480
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. Deep learning techniques are brought to bear on the camera output to increase speed, accuracy and reliability.
    Type: Application
    Filed: April 8, 2022
    Publication date: August 18, 2022
    Inventors: John S. Foster, Mark A. Naivar, Kevin E. Shields, Daryl W. Grummitt, Timothy J. Wilt, Yareeve Zemel, Lily Li
  • Publication number: 20190360915
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. Deep learning techniques are brought to bear on the camera output to increase speed, accuracy and reliability.
    Type: Application
    Filed: June 22, 2019
    Publication date: November 28, 2019
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Mark A. NAIVAR, Kevin E. SHIELDS, Daryl W. GRUMMITT, Lily LI, Daryl W. GRUMMITT, Yareeve ZEMEL
  • Patent number: 10379030
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 13, 2019
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Kevin E. Shields, Mehran R. Hoonejani, Mark A. Naivar, Yareeve Zemel
  • Publication number: 20190143329
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which may be used to separate a target particle from non-target material in a sample stream. In order to improve the sorter speed, accuracy or yield, the particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the sample inlet channel. The particle manipulation device may have two separate sort output channels, wherein the sort channel used depends on the characteristics of the sort pulse delivered to the micromechanical particle manipulation device. Because of the improved focusing and pulse details, a droplet may be formed which contains a single particle, which may also be barcoded with an identifiable signature bead.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 16, 2019
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin E. SHIELDS, Mehran R. HOONEJANI
  • Publication number: 20180154361
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has a sample inlet channel, output channels, and a movable member formed on a substrate. The device may be used to separate a target particle from non-target material in a sample stream. In order to improve the sorter speed, accuracy or yield, the particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the sample inlet channel. The device may be manufactured using three or more substrates in a wafer stack, and each device may be singulated from the wafer stack using submerged trenches in the middle substrate.
    Type: Application
    Filed: January 17, 2018
    Publication date: June 7, 2018
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin E. SHIELDS, Mehran R. Hoonejani, Adam G. Swanson
  • Publication number: 20160377525
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 29, 2016
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin E. Shields, Mehran R. Hoonejani, Mark A. NAIVAR, Yareeve ZEMEL
  • Publication number: 20160263575
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Stefan MILTENYI, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner, Mehran R. Hoonejani
  • Patent number: 9404838
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: August 2, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner, Mehran R. Hoonejani
  • Patent number: 9372144
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner
  • Patent number: 9360164
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a sensor to detect when the sample volume is exhausted or nearly exhausted. The sensor sends a signal to a fluid control means that reverses the pressure between one of the output channels and the input channels, to keep the surfaces wet with a volume of the sample fluid. This volume can be maintained in the channel until an operator intervenes, or it can be repeatedly shuttled back and forth between the input channel and an output channel. By keeping the channels wet, material from the sample stream does not become adhered to the channel walls, which might otherwise irreversibly change or damage the device.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: June 7, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Kevin E. Shields, Jaquelin K. Spong
  • Patent number: 9168568
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the valve. By reversing the flow from output to input, the same laser interrogation region may be used to perform the cytometry. The cytometry may be performed throughout the sorting process to optimize or control the sorting, or may be performed afterward to allow a multi-pass, sequential sort to be performed on the same sample.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: October 27, 2015
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Kevin E. Shields, Jaquelin K. Spong
  • Publication number: 20150211685
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a sensor to detect when the sample volume is exhausted or nearly exhausted. The sensor sends a signal to a fluid control means that reverses the pressure between one of the output channels and the input channels, to keep the surfaces wet with a volume of the sample fluid. This volume can be maintained in the channel until an operator intervenes, or it can be repeatedly shuttled back and forth between the input channel and an output channel. By keeping the channels wet, material from the sample stream does not become adhered to the channel walls, which might otherwise irreversibly change or damage the device.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 30, 2015
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Nicholas C. MARTINEZ, Kevin E. SHIELDS, Jaquelin K. SPONG
  • Publication number: 20150093810
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device, which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stern cell, zygote, a cancer cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Owl biomedical, Inc.
    Inventors: John S. Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner, Mehran R. Hoonejani
  • Publication number: 20150093817
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Owl biomedical, Inc.
    Inventors: John S. Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner
  • Publication number: 20140097129
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the valve. By reversing the flow from output to input, the same laser interrogation region may be used to perform the cytometry. The cytometry may be performed throughout the sorting process to optimize or control the sorting, or may be performed afterward to allow a multi-pass, sequential sort to be performed on the same sample.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 10, 2014
    Applicant: OWL BIOMEDICAL, INC.
    Inventors: John S. FOSTER, Nicholas C. MARTINEZ, Kevin E. SHIELDS, Jaquelin K. SPONG
  • Patent number: 8256899
    Abstract: A system and method for reproducing complex camera movements that are made during a recorded scene so that camera movements can be precisely reproduced. A camera is mounted onto a camera support system. The camera support system has multiple articulated joints that enable the camera support system to move the camera through a wide range. Sensors are provided at each of the articulated joints to sense any changes in orientation experienced during a scene. The sensors create corresponding data signals indicative of the movement. A scene is shot with the camera. During the scene, the camera has a shooting position that is altered using the camera support system. The sensors detect the movements and the data signals produced are saved in an electronic memory. The saved data signals are used at a later time to reproduce movements of the camera support system.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: September 4, 2012
    Inventor: Kevin E. Shields