Patents by Inventor Kevin Edward Smith

Kevin Edward Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6878650
    Abstract: A method is provided for producing fine denier multicomponent thermoplastic polymer filaments incorporating high melt-flow rate polymers. Multicomponent filaments are extruded such that the high melt-flow rate polymer component is substantially surrounded by one or more low melt-flow rate polymer components. The extruded multicomponent filament is then melt-attenuated with a significant drawing force to reduce the filament diameter and form continuous, fine denier filaments.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: April 12, 2005
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Publication number: 20040161992
    Abstract: The present invention provides multicomponent fine fiber webs and multilayer laminates thereof having an average fiber diameter less than about 7 micrometers and comprising a first olefin polymer component and a second distinct polymer component such as an amorphous polyolefin or polyamide. Multilayer laminates incorporating the fine multicomponent fiber webs are also provided such as, for example, spunbond/meltblown/spunbond laminates or spunbond/meltblown/meltblown/spunbond laminates. The fine multicomponent fiber webs and laminates thereof provide laminates having excellent softness, peel strength and/or controlled permeability.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 19, 2004
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Matthew Boyd Lake, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Patent number: 6723669
    Abstract: The present invention provides multicomponent fine fiber webs and multilayer laminates thereof having an average fiber diameter less than about 7 micrometers and comprising a first olefin polymer component and a second distinct polymer component such as an amorphous polyolefin or polyamide. Multilayer laminates incorporating the fine multicomponent fiber webs are also provided such as, for example, spunbond/meltblown/spunbond laminates or spunbond/meltblown/meltblown/spunbond laminates. The fine multicomponent fiber webs and laminates thereof provide laminates having excellent softness, peel strength and/or controlled permeability.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: April 20, 2004
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Matthew Boyd Lake, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Patent number: 6686303
    Abstract: An improved nonwoven web composite is formed by combining splittable bicomponent thermoplastic filaments with a component selected from other fibers and particles. The bicomponent filaments include distinct regions of first and second incompatible polymers extending the length of the filaments. After the bicomponent filaments are combined with the other fibers and/or particles, the bicomponent filaments are caused to split lengthwise along boundaries between the regions of different polymers, resulting in a web or matrix of finer filaments which entrap, ensnare and contain the other fibers and/or particles within the web or matrix. The nonwoven web composite is particularly useful for making absorbent articles, which require durability and optimum levels of absorbent fibers and/or particles.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: February 3, 2004
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Bryan David Haynes, Billy Dean Arnold, Justin Max Duellman, Ryan Clinton Frank, Jeffrey Lawrence McManus, Charles Allen Smith, Ty Jackson Stokes, Kevin Edward Smith, Darryl Franklin Clark, Debra Jean McDowall, Samuel Edward Marmon, Christopher Cosgrove Creagan, Xin Ning, David Lewis Myers
  • Patent number: 6642429
    Abstract: A personal care absorbent article made of a nonwoven material having a plurality of polymeric fibers having a fiber interior comprising at least one of a liquid fluid and a gaseous fluid. The nonwoven materials are produced by heating at least one polymer to a melting point, forming a molten polymer; extruding the molten polymer through a plurality of capillaries, injecting a liquid fluid and/or a gaseous fluid into the molten polymer prior to, during and/or after the extruding step, forming a plurality of fluid-filled polymeric fibers, wherein the liquid fluid and/or gaseous fluid is dispersed within the interior of the polymeric fibers, and depositing the fluid-filled polymeric fibers onto a web forming surface, forming a nonwoven material.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: November 4, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Julia Carter, Darryl Franklin Clark, Bryan David Haynes, Matthew Boyd Lake, Caroline L. Miller, Kevin Edward Smith, Ty Jackson Stokes, Jeffrey Lawrence McManus
  • Patent number: 6589892
    Abstract: An improved nonwoven web composite is formed by combining bicomponent thermoplastic filaments having adhesive properties with a component selected from other fibers and particles. The bicomponent filaments include distinct regions of first and second incompatible polymers across a cross-section of individual filaments. After the bicomponent filaments are combined with the other fibers and/or particles, the adhesive properties of the bicomponent filaments result in a web or matrix of filaments having improved ability to entrap, ensnare and contain the other fibers and/or particles within the web or matrix. The nonwoven web composite is particularly useful for making absorbent articles, which require stability and optimum levels of absorbent fibers and/or particles.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: July 8, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Kevin Edward Smith, Bryan David Haynes, Justin Max Duellman, Ann Louise McCormack, Jeffrey Lawrence McManus, Charles Allen Smith, Debra Jean McDowall, Samuel Edward Marmon, Christopher Cosgrove Creagan, Xin Ning, David Lewis Myers, Darryl Franklin Clark
  • Publication number: 20020009941
    Abstract: A method is provided for producing fine denier multicomponent thermoplastic polymer filaments incorporating high melt-flow rate polymers. Multicomponent filaments are extruded such that the high melt-flow rate polymer component is substantially surrounded by one or more low melt-flow rate polymer components. The extruded multicomponent filament is then melt-attenuated with a significant drawing force to reduce the filament diameter and form continuous, fine denier filaments.
    Type: Application
    Filed: December 20, 2000
    Publication date: January 24, 2002
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Patent number: 5964742
    Abstract: There is disclosed a thermal bonding pattern for nonwoven fabric comprising a pattern having an element aspect ratio between about 2 and about 20 and an unbonded fiber aspect ratio of between about 3 and about 10. It has been unexpectedly found that such a fabric has a higher abrasion resistance and strength than a similar fabric bonded with different bond patterns of similar bond areas. This combination of strength and abrasion resistance has long been sought after.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: October 12, 1999
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Ann Louise McCormack, David Lee Fuqua, Kevin Edward Smith