Patents by Inventor Kevin H. Yu

Kevin H. Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11760888
    Abstract: Materials are disclosed for the safe sequestration and removal of hazardous contaminants from a surface. The materials can be sprayed, rolled, painted, brushed or dip coated onto any surface and allowed to dry and/or cure at room temperature or drying/curing can be accelerated by the application of heat to form a coating that entraps the contaminant therein. The coating and the entrapped contaminant can then peeled from the surface and safely disposed of to minimize hazardous waste. The coating includes a colorimetric additive that is specific to the contaminant, the coating and the contaminant producing a visual indication of contamination.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: September 19, 2023
    Assignee: INNOSENSE LLC
    Inventors: Uma Sampathkumaran, Kevin H. Yu, Raymond Winter
  • Patent number: 11021615
    Abstract: Materials are disclosed for the safe sequestration and removal of hazardous contaminants from a surface. The materials can be sprayed, rolled, painted, brushed or dip coated onto any surface and allowed to dry and/or cure at room temperature or drying/curing can be accelerated by the application of heat to form a coating that entraps the contaminant therein. The coating and the entrapped contaminant can then peeled from the surface and safely disposed of to minimize hazardous waste. The coating includes a colorimetric additive that is specific to the contaminant, the coating and the contaminant producing a visual indication of contamination.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: June 1, 2021
    Assignee: INNOSENSE LLC
    Inventors: Uma Sampathkumaran, Kevin H. Yu, Raymond Winter
  • Patent number: 10435584
    Abstract: The present invention relates to hydrophilic anti-fog coatings. In particular, the coatings use two types of nanoscale particles, colloidal silica and porous organosilicate micelles, in a polyurethane matrix. The invention is an anti-fog coating for optically clear substrates (polycarbonate, polyurethane, nylon, polyester and other clear plastics) without the need for a primer and glass substrates with an additional primer layer, comprising monosized colloidal silica nanoparticles and porous organosilicate micelles in a polyurethane matrix. The silica is preferably 1-5% by weight and the micelles are loaded at 0.1 to 10% volume percentage by volume. The polyurethane prepolymer is dissolved at 10-40% by weight in a mixture of tertiary amyl alcohol and diacetone alcohol to customize for dip, flow or spray coating processes.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: October 8, 2019
    Assignee: INNOSENSE LLC
    Inventors: Uma Sampathkumaran, Kevin H. Yu, Corey M. Selman
  • Publication number: 20180100085
    Abstract: The present invention relates to hydrophilic anti-fog coatings. In particular, the coatings use two types of nanoscale particles, colloidal silica and porous organosilicate micelles, in a polyurethane matrix. The invention is an anti-fog coating for optically clear substrates (polycarbonate, polyurethane, nylon, polyester and other clear plastics) without the need for a primer and glass substrates with an additional primer layer, comprising monosized colloidal silica nanoparticles and porous organosilicate micelles in a polyurethane matrix. The silica is preferably 1-5% by weight and the micelles are loaded at 0.1 to 10% volume percentage by volume. The polyurethane prepolymer is dissolved at 10-40% by weight in a mixture of tertiary amyl alcohol and diacetone alcohol to customize for dip, flow or spray coating processes.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 12, 2018
    Inventors: Uma Sampathkumaran, Kevin H. Yu, Corey M. Selman
  • Patent number: 9840639
    Abstract: The present invention relates to hydrophilic anti-fog coatings. In particular, the coatings use two types of nanoscale particles, colloidal silica and porous organosilicate micelles, in a polyurethane matrix. The invention is an anti-fog coating for optically clear substrates (polycarbonate, polyurethane, nylon, polyester and other clear plastics) without the need for a primer and glass or oxide substrates with an additional primer layer, comprising monosized colloidal silica nanoparticles and porous organosilicate micelles in a polyurethane matrix. The silica is preferably 1-5% by weight and the micelles are loaded at 0.1 to 10% volume percentage by volume.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: December 12, 2017
    Assignee: INNOSENSE LLC
    Inventors: Uma Sampathkumaran, Kevin H. Yu, Corey M. Selman
  • Publication number: 20170342277
    Abstract: Materials are disclosed for the safe sequestration and removal of hazardous contaminants from a surface. The materials can be sprayed, rolled, painted, brushed or dip coated onto any surface and allowed to dry and/or cure at room temperature or drying/curing can be accelerated by the application of heat to form a coating that entraps the contaminant therein. The coating and the entrapped contaminant can then peeled from the surface and safely disposed of to minimize hazardous waste. The coating includes a colorimetric additive that is specific to the contaminant, the coating and the contaminant producing a visual indication of contamination.
    Type: Application
    Filed: May 31, 2017
    Publication date: November 30, 2017
    Inventors: Uma Sampathkumaran, Kevin H. Yu, Raymond Winter
  • Publication number: 20150344725
    Abstract: The present invention relates to hydrophilic anti-fog coatings. In particular, the coatings use two types of nanoscale particles, colloidal silica and porous organosilicate micelles, in a polyurethane matrix. The invention is an anti-fog coating for optically clear substrates (polycarbonate, polyurethane, nylon, polyester and other clear plastics) without the need for a primer and glass or oxide substrates with an additional primer layer, comprising monosized colloidal silica nanoparticles and porous organosilicate micelles in a polyurethane matrix. The silica is preferably 1-5% by weight and the micelles are loaded at 0.1 to 10% volume percentage by volume.
    Type: Application
    Filed: March 20, 2015
    Publication date: December 3, 2015
    Inventors: Corey M. Selman, Kevin H. Yu, Uma Sampathkumaran
  • Patent number: 8114248
    Abstract: A method and system referred to as PALM (Patterning by Adhesive of Large Relief Three-Dimensional Microstructures) with large reliefs exceeding 1 ?m and being as large as 100 ?m. The microstructures can be either deterministic (such as microprisms), or random (such as diffusers), the first obtained by copying an original supermaster, and latter obtained by copying a laser speckle pattern. The master process entails copying a supermaster into the form of the microstructure constituting a pattern on the patterning cylinder (called a drum), to be then continuously multiplied in the PALM system, in a continuous roll-to-roll web process. The latter method, together with the related system, is the subject of this invention. The rolls continuously repeat the master pattern, copying by adhesive with large viscosity on acrylic (hybrid) as well as by a monolithic process. The monolithic process can be accomplished using temperature and pressure, or by UV-cured polymerization.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: February 14, 2012
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Kang Lee, Nanda Nathan, Engin Arik, Thomas Forrester, Tomasz Jannson, Edward M. Kaiser, Kevin H. Yu
  • Patent number: 7660024
    Abstract: An autostereoscopic three-dimensional liquid crystal display system and a method of making the system. The system includes a collimated backlight, a first light diffracting hologram, a second right-left interlacing hologram and a liquid crystal display. If the backlight is not collimated, a micro-collimator array is used to collimate the backlight prior to passing into the first hologram. The second right-left interlacing hologram is formed through a two step process. The process comprises positioning a photolithographic mask and a view region mask in a first position, recording the first holographic recording in the first position, shifting the photolithographic mask and the view region mask to a second position and recording the second holographic recording in the second position.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: February 9, 2010
    Assignee: Physical Optics Corporation
    Inventors: Tin Maung Aye, Kevin H. Yu, Gajendra . Savant
  • Publication number: 20080156421
    Abstract: A method and system referred to as PALM (Patterning by Adhesive of Large Relief Three-Dimensional Microstructures) with large reliefs exceeding 1 ?m and being as large as 100 ?m. The microstructures can be either deterministic (such as microprisms), or random (such as diffusers), the first obtained by copying an original supermaster, and latter obtained by copying a laser speckle pattern. The master process entails copying a supermaster into the form of the microstructure constituting a pattern on the patterning cylinder (called a drum), to be then continuously multiplied in the PALM system, in a continuous roll-to-roll web process. The latter method, together with the related system, is the subject of this invention. The rolls continuously repeat the master pattern, copying by adhesive with large viscosity on acrylic (hybrid) as well as by a monolithic process. The monolithic process can be accomplished using temperature and pressure, or by UV-cured polymerization.
    Type: Application
    Filed: January 3, 2007
    Publication date: July 3, 2008
    Inventors: Kang Lee, Nanda Nathan, Engin Arik, Thomas Forrester, Tomasz Jannson, Edward M. Kaiser, Kevin H. Yu
  • Patent number: 6563612
    Abstract: A collimating screen simulator comprising a projector and a holographic diffuser screen. The projector is adapted to project a viewable image onto a focal plane that is spaced from the projector. The focal plane has a backside and a viewing side opposite the focal plane backside. In operation, the projector is able to project the image onto the focal plane backside. The holographic diffuser screen is adapted to permit light from a source and incident upon a surface of the diffuser screen to pass through the screen. The holographic diffuser screen has a first surface facing the focal plane viewing side for receiving the incident light. The holographic diffuser screen also has a second surface opposite the first surface. The holographic diffuser screen is spaced from the focal plane viewing side by a distance effective for enabling a viewer facing the second surface of the holographic diffuser screen to see collimated light exiting the holographic screen.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: May 13, 2003
    Assignee: Physical Optics Corporation
    Inventors: Tin M. Aye, Kevin H. Yu, Gajendra D. Savant
  • Patent number: 6462888
    Abstract: A diffuser master is provided which is manufactured mechanically instead of holographically. The master can be made from a suitable substrate including relatively hard materials such as plastic, glass or metal. A substrate having a first side is worked to form a diffuser surface relief structure thereon. The substrate can be buffed using a buffing agent of a selected grit in order to form surface scratches in the first side of the substrate. The substrate can also be blasted with shot particles in order to form indentations and depressions in the first side. The substrate can alternatively be acid or alkali etched in order to form surface irregularities in the first side. The scratches, depressions or irregularities can be formed in order to create a desired surface relief and hence desired diffuser output characteristics.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: October 8, 2002
    Assignee: Physical Optics Corporation
    Inventors: Gajendra D. Savant, Kevin H. Yu, Andrew A. Kostrzewski
  • Publication number: 20020018040
    Abstract: The invention is directed to an autostereoscopic three-dimensional liquid crystal display system and a method of making the system. The system comprises a collimated backlight, a first light diffracting hologram, a second right-left interlacing hologram and a liquid crystal display. If the backlight is not collimated, a micro-collimator array is used to collimate the backlight prior to passing into the first hologram. The second right-left interlacing hologram is formed through a two step process. The process comprises positioning a photolithographic mask and a view region mask in a first position, recording the first holographic recording in the first position, shifting the photolithographic mask and the view region mask to a second position and recording the second holographic recording in the second position.
    Type: Application
    Filed: August 1, 2001
    Publication date: February 14, 2002
    Inventors: Tin M. Aye, Kevin H. Yu, Gajendra D. Savant
  • Publication number: 20010038492
    Abstract: A diffuser master is provided which is manufactured mechanically instead of holographically. The master can be made from a suitable substrate including relatively hard materials such as plastic, glass or metal. A substrate having a first side is worked to form a diffuser surface relief structure thereon. The substrate can be buffed using a buffing agent of a selected grit in order to form surface scratches in the first side of the substrate. The substrate can also be blasted with shot particles in order to form indentations and depressions in the first side. The substrate can alternatively be acid or alkali etched in order to form surface irregularities in the first side. The scratches, depressions or irregularities can be formed in order to create a desired surface relief and hence desired diffuser output characteristics.
    Type: Application
    Filed: January 12, 2001
    Publication date: November 8, 2001
    Applicant: Physical Optics Corporation
    Inventors: Gajendra D. Savant, Kevin H. Yu, Andrew A. Kostrzewski
  • Patent number: 6241903
    Abstract: A diffuser master is provided which is manufactured mechanically instead of holographically. The master can be made from a suitable substrate including relatively hard materials such as plastic, glass or metal. A substrate having a first side is worked to form a diffuser surface relief structure thereon. The substrate can be buffed using a buffing agent of a selected grit in order to form surface scratches in the first side of the substrate. The substrate can also be blasted with shot particles in order to form indentations and depressions in the first side. The substrate can alternatively be acid or alkali etched in order to form surface irregularities in the first side. The scratches, depressions or irregularities can be formed in order to create a desired surface relief and hence desired diffuser output characteristics.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: June 5, 2001
    Assignee: Physical Optics Corporation
    Inventors: Gajendra D. Savant, Kevin H. Yu, Andrew A. Kostrzewski
  • Publication number: 20010002355
    Abstract: A diffuser master is provided which is manufactured mechanically instead of holographically. The master can be made from a suitable substrate including relatively hard materials such as plastic, glass or metal. A substrate having a first side is worked to form a diffuser surface relief structure thereon. The substrate can be buffed using a buffing agent of a selected grit in order to form surface scratches in the first side of the substrate. The substrate can also be blasted with shot particles in order to form indentations and depressions in the first side. The substrate can alternatively be acid or alkali etched in order to form surface irregularities in the first side. The scratches, depressions or irregularities can be formed in order to create a desired surface relief and hence desired diffuser output characteristics.
    Type: Application
    Filed: January 12, 2001
    Publication date: May 31, 2001
    Applicant: Physical Optics Coporation
    Inventors: Gajendra D. Savant, Kevin H. Yu, Andrew A. Kostrzewski
  • Publication number: 20010001459
    Abstract: A diffuser master is provided which is manufactured mechanically instead of holographically. The master can be made from a suitable substrate including relatively hard materials such as plastic, glass or metal. A substrate having a first side is worked to form a diffuser surface relief structure thereon. The substrate can be buffed using a buffing agent of a selected grit in order to form surface scratches in the first side of the substrate. The substrate can also be blasted with shot particles in order to form indentations and depressions in the first side. The substrate can alternatively be acid or alkali etched in order to form surface irregularities in the first side. The scratches, depressions or irregularities can be formed in order to create a desired surface relief and hence desired diffuser output characteristics.
    Type: Application
    Filed: January 12, 2001
    Publication date: May 24, 2001
    Applicant: Physical Optics Corporation
    Inventors: Gajendra D. Savant, Kevin H. Yu, Andrew A. Kostrzewski
  • Patent number: 5606433
    Abstract: A process for making a multilayer photopolymer hologram structure without intervening adhesive layers between component photopolymer layers.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: February 25, 1997
    Assignee: Hughes Electronics
    Inventors: Khin S. Yin, Kevin H. Yu, John E. Wreede
  • Patent number: 5499117
    Abstract: A method for transferring a photopolymer hologram from a curved exposure surface to a curved application surface including the steps of forming a release layer on the exposure surface, forming a photopolymer layer on the release layer, forming a protective layer on the photopolymer layer, recording a hologram in the photopolymer layer, removing the protective layer, attaching the laminar assembly comprised of the exposure substrate, the release layer and the photopolymer layer to the curved application surface of the final substrate with an optical adhesive layer located between the photopolymer layer and the curved application surface, and removing the exposure substrate from the release layer.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: March 12, 1996
    Assignee: Hughes Aircraft Company
    Inventors: Khin S. Yin, Kevin H. Yu
  • Patent number: 5401346
    Abstract: A hologram decal including a hologram layer having first and second surfaces, a first polymer layer secured to the first hologram surface, a second polymer layer secured to the second hologram surface, a pressure sensitive adhesive layer disposed on the non-hologram side of one of the first and second polymer layers, and a release liner covering said pressure sensitive adhesive layer, and techniques for making the hologram decal.
    Type: Grant
    Filed: March 3, 1994
    Date of Patent: March 28, 1995
    Assignee: Hughes Aircraft Company
    Inventors: Khin S. Yin, John E. Wreede, Kevin H. Yu