Patents by Inventor Kevin Hauser

Kevin Hauser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901160
    Abstract: A radio-frequency (RF) power variable capacitor capable of operating at, at least, 50 watts in the MHz range. The capacitor has a composite HDK-NDK ceramic dielectric. The HDK (high dielectric constant) component comprises an active matrix of barium strontium titanate, for example. Acoustic resonances are reduced or eliminated by the addition of a metal or metalloid oxide such as magnesium borate (NDK—low dielectric constant), which acts as an acoustic resonance reduction agent (ARRA) in the RF power domain. The acoustic resonances which previously occurred under bias voltage 500 V or 1100 V in prior art RF power variable capacitors are eliminated by the addition of the ARRA.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: February 13, 2024
    Assignee: Comet AG
    Inventors: Thomas Fink, Kevin Häuser, Holger Maune, Daniel Kienemund, Joachim Binder, Rolf Jakoby, Nicole Bohn
  • Publication number: 20220189739
    Abstract: A radio-frequency (RF) power variable capacitor capable of operating at, at least, 50 watts in the MHz range. The capacitor has a composite HDK-NDK ceramic dielectric. The HDK (high dielectric constant) component comprises an active matrix of barium strontium titanate, for example. Acoustic resonances are reduced or eliminated by the addition of a metal or metalloid oxide such as magnesium borate (NDK—low dielectric constant), which acts as an acoustic resonance reduction agent (ARRA) in the RF power domain. The acoustic resonances which previously occurred under bias voltage 500 V or 1100 V in prior art RF power variable capacitors are eliminated by the addition of the ARRA.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 16, 2022
    Inventors: Thomas Fink, Kevin Häuser, Holger Maune, Daniel Kienemund, Joachim Binder, Rolf Jakoby, Nicole Bohn
  • Patent number: 10908208
    Abstract: Testing apparatus operable to collect optical performance data of optoelectronic devices at different temperatures includes thermal-adjustment devices in thermal and mechanical contact with the optoelectronic devices via optoelectronic device stages. The thermal-adjustment devices can direct thermal energy to the optoelectronic devices under test without heating test targets in close proximity. Consequently, in some instances, spurious results can be avoided and rapid measurement of the optoelectronic devices different temperatures can be achieved.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 2, 2021
    Assignee: ams Sensors Singapore. Pte. Ltd.
    Inventors: Jens Geiger, Yeoh Ging Sheng, Kevin Hauser
  • Publication number: 20190324081
    Abstract: Testing apparatus operable to collect optical performance data of optoelectronic devices at different temperatures includes thermal-adjustment devices in thermal and mechanical contact with the optoelectronic devices via optoelectronic device stages. The thermal-adjustment devices can direct thermal energy to the optoelectronic devices under test without heating test targets in close proximity. Consequently, in some instances, spurious results can be avoided and rapid measurement of the optoelectronic devices different temperatures can be achieved.
    Type: Application
    Filed: January 9, 2018
    Publication date: October 24, 2019
    Applicant: ams Sensors Singapore Pte, Ltd.
    Inventors: Jens Geiger, Yeoh Ging Sheng, Kevin Hauser
  • Patent number: 10352764
    Abstract: An optoelectronic module that includes a reflectance member which exhibits mitigated or eliminated fan-out field-of-view overlap can be concealed or its visual impact minimized compared to a host device in which the optoelectronic module is mounted. In some instances, the reflectance member can be implemented as a plurality of through holes and in other instances the reflectance member may be a contiguous spin-coated polymeric coating. In general, the reflectance member can be diffusively reflective to the same particular wavelengths or ranges of wavelengths as the host device in which it is mounted.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: July 16, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jens Geiger, Frank Sobel, Rene Kromhof, Alberto Soppelsa, Kevin Hauser, Robert Lenart
  • Publication number: 20170089757
    Abstract: An optoelectronic module that includes a reflectance member which exhibits mitigated or eliminated fan-out field-of-view overlap can be concealed or its visual impact minimized compared to a host device in which the optoelectronic module is mounted. In some instances, the reflectance member can be implemented as a plurality of through holes and in other instances the reflectance member may be a contiguous spin-coated polymeric coating. In general, the reflectance member can be diffusively reflective to the same particular wavelengths or ranges of wavelengths as the host device in which it is mounted.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 30, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Jens Geiger, Frank Sobel, Rene Kromhof, Alberto Soppelsa, Kevin Hauser, Robert Lenart