Patents by Inventor Kevin Holsinger

Kevin Holsinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8218587
    Abstract: Embodiments are directed to systems and methods for adjusting a wavelength, bandwidth or both. Such systems and methods may be applicable to laser beams within a laser cavity or amplifier. For some embodiments, such systems and methods may be used to allow a user to set a desired wavelength and bandwidth of a short pulse laser system for operation at those parameters without further adjustment by the user.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 10, 2012
    Assignee: Newport Corporation
    Inventors: Ventzislav Stoev, Kevin Holsinger, David S. Bell, Olaf Korth
  • Publication number: 20110292954
    Abstract: Embodiments are directed to systems and methods for adjusting a wavelength, bandwidth or both. Such systems and methods may be applicable to laser beams within a laser cavity or amplifier. For some embodiments, such systems and methods may be used to allow a user to set a desired wavelength and bandwidth of a short pulse laser system for operation at those parameters without further adjustment by the user.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Inventors: Ventzislav Stoev, Kevin Holsinger, David S. Bell, Olaf Korth
  • Patent number: 7016107
    Abstract: A regenerative amplifier system that is optimized for low-gain gain media is provided. The system is configured to include a minimum number of intra-cavity elements while still eliminating the leakage of the seed pulses from the output beam. In addition, the contrast ratio of the amplified pulses is increased even considering the long build-up time that is required in low-gain regenerative amplifiers. This is accomplished using a single Pockels cell between the oscillator and amplifier to select a single seed pulse for the cavity, instead of using a Faraday isolator. This directs the unwanted seed pulses in a separate direction from the output pulse. When the amplified pulse exits the cavity, it is directed in a direction away from the oscillator by the same Pockels cell. Only one additional Pockels cell and one polarizer are required inside the regenerative amplifier cavity.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: March 21, 2006
    Assignee: Spectra Physics, Inc.
    Inventors: James D. Kafka, Jianping Zhou, Kevin Holsinger
  • Patent number: 6930822
    Abstract: Wavelength stability of an optical oscillator has been enhanced by feedback from an external position-sensing detector to control the position or tilt of an intracavity optical element, such as a mirror. The wavelength stability results from stabilization of the intracavity beam position relative to an aperture in the oscillator. The wavelength selectivity of the aperture results from incorporation of a dispersive element in the oscillator cavity that produces a mapping of wavelength to beam position at the aperture.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: August 16, 2005
    Assignee: Spectra Physics, Inc.
    Inventors: Richard Boggy, Kevin Holsinger, Dixon Kwok Chung
  • Publication number: 20050157382
    Abstract: A directly diode-pumped amplifier system is disclosed which produces sub-picosecond pulses with an output power of 2 watts or more. Computer resources are coupled to the amplifier system and are configured to provide control of operating parameters of the amplifier system. An optional second harmonic generator is supplied to increase the contrast ratio and reduce the minimum focal spot size. This amplifier system can be utilized for material processing applications.
    Type: Application
    Filed: January 7, 2005
    Publication date: July 21, 2005
    Inventors: James Kafka, Jianping Zhou, Juerg Aus-Der-Au, Kevin Holsinger, Ventzislav Stoev
  • Publication number: 20050157381
    Abstract: A regenerative amplifier system that is optimized for low-gain gain media is provided. The system is configured to include a minimum number of intra-cavity elements while still eliminating the leakage of the seed pulses from the output beam. In addition, the contrast ratio of the amplified pulses is increased even considering the long build-up time that is required in low-gain regenerative amplifiers. This is accomplished using a single Pockels cell between the oscillator and amplifier to select a single seed pulse for the cavity, instead of using a Faraday isolator. This directs the unwanted seed pulses in a separate direction from the output pulse. When the amplified pulse exits the cavity, it is directed in a direction away from the oscillator by the same Pockels cell. Only one additional Pockels cell and one polarizer are required inside the regenerative amplifier cavity.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 21, 2005
    Inventors: James Kafka, Jianping Zhou, Kevin Holsinger
  • Publication number: 20050078730
    Abstract: Feedback from a power monitor sampling a portion of the output beam of a cavity is used to control the position of a pump beam relative to the cavity. The pump beam position or orientation is adjusted in response to a dither signal imposed on the position or tilt of an external optic or mirror in order to maximize the efficiency of the cavity in converting pump power to output power. Feedback based on the response of the power monitor may be used to control the position or tilt of the mirror or optic to which the dither was applied.
    Type: Application
    Filed: September 27, 2004
    Publication date: April 14, 2005
    Inventors: Kevin Holsinger, John Ekstrand, Richard Boggy
  • Publication number: 20050074047
    Abstract: Described herein is a laser system with an output coupler and high reflector that defines a resonator cavity. In an embodiment of the invention, a gain medium is positioned in the resonator cavity, producing an intracavity beam in response to a fixed pump beam. The gain medium has an optical face with a preferred region where the pump beam overlaps optically with the intracavity laser. The gain medium movement member is coupled to the gain medium to move the preferred region in a direction parallel to the pumped face to maintain optimal mode matching conditions.
    Type: Application
    Filed: August 7, 2003
    Publication date: April 7, 2005
    Inventors: Richard Boggy, Kevin Holsinger
  • Patent number: 6853655
    Abstract: A laser system includes a pump source that produces a first output. The pump source has a feedback loop with a first summing junction and a first command that has step quantization or digitized set point. An output device is coupled to the pump source to receive the first output and produce a second output. A feedback loop is coupled to the first summing junction. The feedback loop includes a second summing junction coupled to at least a portion of the second output. The second summing junction receives a second command and provides an input to the first summing junction. The feedback loop reduces the step quantization from the first output to provide finer control step of a property of the second output.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: February 8, 2005
    Assignee: Spectra Physics, Inc.
    Inventor: Kevin Holsinger
  • Publication number: 20040001523
    Abstract: Feedback from a power monitor sampling a portion of the output beam of an optical resonator is used to control the position of a pump beam relative to a second laser. The pump beam position or orientation is adjusted in response to a dither signal imposed on the position or tilt of an external optic or mirror in order to maximize the efficiency of the second laser in converting pump power to output power. Feedback based on the response of the power monitor is used to control the position or tilt of the mirror or optic to which the dither was applied.
    Type: Application
    Filed: November 20, 2002
    Publication date: January 1, 2004
    Inventors: Kevin Holsinger, John Philip Ekstrand
  • Publication number: 20030138006
    Abstract: A laser system includes a pump source that produces a first output. The pump source has a feedback loop with a first summing junction and a first command that has step quantization or digitized set point. An output device is coupled to the pump source to receive the first output and produce a second output. A feedback loop is coupled to the first summing junction. The feedback loop includes a second summing junction coupled to at least a portion of the second output. The second summing junction receives a second command and provides an input to the first summing junction. The feedback loop reduces the step quantization from the first output to provide finer control step of a property of the second output.
    Type: Application
    Filed: November 20, 2002
    Publication date: July 24, 2003
    Inventor: Kevin Holsinger
  • Publication number: 20030123131
    Abstract: Wavelength stability of an optical oscillator has been enhanced by feedback from an external position-sensing detector to control the position or tilt of an intracavity optical element, such as a mirror. The wavelength stability results from stabilization of the intracavity beam position relative to an aperture in the oscillator. The wavelength selectivity of the aperture results from incorporation of a dispersive element in the oscillator cavity that produces a mapping of wavelength to beam position at the aperture.
    Type: Application
    Filed: November 20, 2002
    Publication date: July 3, 2003
    Inventors: Richard Boggy, Kevin Holsinger, Dixon Kwok Chung
  • Patent number: 5892783
    Abstract: A laser includes a laser head and a power supply. At least two resonator mirrors define a resonator cavity. A gain medium is positioned in the resonator cavity. A temperature controller is positioned in the laser head and is coupled to the gain medium. The temperature controller maintains the gain medium at a temperature of 25 degrees C. or greater. A pump source supplies a pump beam to the gain medium and producing an output beam. The power source is coupled to the pump source.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: April 6, 1999
    Assignee: Spectra Physics Lasers, Inc.
    Inventor: Kevin Holsinger
  • Patent number: 4947102
    Abstract: A switched resistor regulator is constructed whose duty cycle response is nonlinear with small changes in input control voltage. Specifically, the response of a pulse-width modulator is made to increase less than linearly with small changes in input control voltage. In a preferred embodiment, the pulse-width modulator is altered by comparing the input control voltage with a nonlinear reference signal, rather than the substantially linear reference signal which is used in prior art pulse-width modulators. Specifically, the nonlinear reference signal may be generated by a nonlinear reference voltage circuit, such as an RC charging circuit, or such as a D/A converter controlled by a clocked programmable microprocessor.
    Type: Grant
    Filed: November 8, 1988
    Date of Patent: August 7, 1990
    Assignee: Spectra-Physics, Inc.
    Inventors: John P. Ekstrand, Kevin Holsinger
  • Patent number: 4872104
    Abstract: An apparatus and method for eliminating integrator windup in control systems having a control input, a feedback signal and an actuator that can saturate in response to dynamic non linearities such as slew rate limits. The apparatus of the invention is comprised of circuitry that determines the rate of change of the output of the integrator and compares it to predetermined maximum allowable rates of change. If these maximum allowable rates of change have been exceeded, the comparator circuitry generates a compensation error signal which when combined with normal error signal integrated by the compensator tends to reduce the rate of change on the output of the integrator.
    Type: Grant
    Filed: April 14, 1988
    Date of Patent: October 3, 1989
    Assignee: Spectra Physics
    Inventor: Kevin Holsinger