Patents by Inventor Kevin Hufford

Kevin Hufford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091942
    Abstract: A system and method fort determining the relative positions of robotic manipulators makes use of a camera positioned in an operating room so as to capture images or portions of first and second robotic manipulators that are positioned outside a patient body cavity. The camera captures images of first and second robotic manipulators, the images are analyzed in real time to determine a relative distance between the first robotic manipulator and the second robotic manipulator. The system determines whether the relative distance is below a predetermined threshold, and, if it is, initiates a collision avoidance measure.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 21, 2024
    Inventors: Kevin Hufford, Lior Alpert
  • Patent number: 11324918
    Abstract: A multi-lumen catheter includes a primary lumen having a proximal end and a tip and a secondary lumen parallel to the primary lumen. The primary lumen and the secondary lumen share a wall. A port is defined in the wall proximate the tip of the primary lumen and provides fluidic communication between the primary lumen and the secondary lumen.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: May 10, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Joseph L. Charest, James Hsiao, Christopher DiBiasio, Kevin A. Hufford
  • Patent number: 10661050
    Abstract: A catheter includes an elongated tube having a distal end and a proximal end. The elongated tube includes porous material having an interior and an exterior face. The interior face defines a lumen along a central axis of the elongated tube. The porous material is configured to flow a fluid between the interior face and the exterior face and to seep the fluid out of the porous material through the exterior face and interior face. A lining covers at least a portion of the exterior face and substantially limits perfusion through the exterior face at the portion of the exterior face covered by the lining. The catheter is impregnated with a material that prevents buildup of material on one of an inner face or an outer face of the catheter or the lining is coated with one or more of an anticoagulant, antibiotic, or antithrombotic.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: May 26, 2020
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Joseph L. Charest, James Hsiao, Christopher DiBiasio, Kevin A. Hufford
  • Patent number: 10207227
    Abstract: An compact hydraulic manifold for transporting shear sensitive fluids is provided. A channel network can include a trunk and branch architecture coupled to a bifurcation architecture. Features such as tapered channel walls, curvatures and angles of channels, and zones of low fluid pressure can be used to reduce the size while maintaining wall shear rates within a narrow range. A hydraulic manifold can be coupled to a series of microfluidic layers to construct a compact microfluidic device.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 19, 2019
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Christopher DiBiasio, Joseph L. Charest, Jeffrey T. Borenstein, Ernest S. Kim, Daniel I. Harjes, Kevin Hufford
  • Publication number: 20180229001
    Abstract: A multi-lumen catheter includes a primary lumen having a proximal end and a tip and a secondary lumen parallel to the primary lumen. The primary lumen and the secondary lumen share a wall. A port is defined in the wall proximate the tip of the primary lumen and provides fluidic communication between the primary lumen and the secondary lumen.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Inventors: Joseph L. Charest, James Hsiao, Christopher DiBiasio, Kevin A. Hufford
  • Publication number: 20180229002
    Abstract: A catheter includes an elongated tube having a distal end and a proximal end. The elongated tube includes porous material having an interior and an exterior face. The interior face defines a lumen along a central axis of the elongated tube. The porous material is configured to flow a fluid between the interior face and the exterior face and to seep the fluid out of the porous material through the exterior face and interior face. A lining covers at least a portion of the exterior face and substantially limits perfusion through the exterior face at the portion of the exterior face covered by the lining. The catheter is impregnated with a material that prevents buildup of material on one of an inner face or an outer face of the catheter or the lining is coated with one or more of an anticoagulant, antibiotic, or antithrombotic.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Inventors: Joseph L. Charest, James Hsiao, Christopher DiBiasio, Kevin A. Hufford
  • Patent number: 9962519
    Abstract: The device and methods described herein relate to a seeping flow catheter. The seeping flow catheter includes a porous material. The inner face of the porous material defines the lumen of the catheter. The porous material is configured such that fluid can flow along the length of the catheter, between the inner face and outer face of the porous material. As the fluid flows through the porous material, the fluid can seep into the lumen of the catheter through the inner face or out of the catheter through the outer face of the porous material. Portions of the inner or outer face can include a lining that substantial reduces the perfusion of the fluid through the lined areas.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: May 8, 2018
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Joseph L. Charest, James Hsiao, Christopher DiBiasio, Kevin A. Hufford
  • Patent number: 9782292
    Abstract: The present disclosure describes a catheter guide tool. More particularly, the catheter guide tool is a bi-stable device used for the insertion and advancement of a catheter. The catheter guide tool includes a gimbal. A guide axis runs through the gimbal. A catheter advancement mechanism is coupled to the gimbal and configured to advance the catheter along the guide axis. The guide tool also includes a pivot assembly coupling the gimbal to a support platform. The pivot assembly is configured to pivot the guide axis from a first position perpendicular to a target surface to a second position tangential to the target surface along a single primary plane of rotation of the gimbal.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: October 10, 2017
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Kevin Hufford, Christopher V. Trainor
  • Publication number: 20170252702
    Abstract: An compact hydraulic manifold for transporting shear sensitive fluids is provided. A channel network can include a trunk and branch architecture coupled to a bifurcation architecture. Features such as tapered channel walls, curvatures and angles of channels, and zones of low fluid pressure can be used to reduce the size while maintaining wall shear rates within a narrow range. A hydraulic manifold can be coupled to a series of microfluidic layers to construct a compact microfluidic device.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 7, 2017
    Inventors: Christopher DiBiasio, Joseph L. Charest, Jeffrey T. Borenstein, Ernest S. Kim, Daniel I. Harjes, Kevin Hufford
  • Patent number: 9656212
    Abstract: An compact hydraulic manifold for transporting shear sensitive fluids is provided. A channel network can include a trunk and branch architecture coupled to a bifurcation architecture. Features such as tapered channel walls, curvatures and angles of channels, and zones of low fluid pressure can be used to reduce the size while maintaining wall shear rates within a narrow range. A hydraulic manifold can be coupled to a series of microfluidic layers to construct a compact microfluidic device.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: May 23, 2017
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Christopher DiBiasio, Joseph L. Charest, Jeffrey T. Borenstein, Ernest S. Kim, Daniel I. Harjes, Kevin Hufford
  • Patent number: 9629650
    Abstract: A laparoscopy tool includes a sheath and a control wire slideably disposed within a lumen of the sheath. The sheath has a diameter of less than 1.6 mm and is introduced through an abdominal incision. A handle axially displaces the control wire within the lumen and operates a conventional tip with wire-controlled opposing jaws that is introduced through the umbilicus and has a bore formed in its trailing end. A first set of blades in the bore engage grooves formed in the leading end of the control wire and a second set of blades engages the sheath to prevent sheath retraction. A cam displaces the second set of blades away from the sheath for sheath introduction and removal, and toward the sheath to prevent sheath retraction. The tip is removed through the umbilicus and the tool is removed through the abdominal incision when the surgery is completed.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: April 25, 2017
    Assignees: University of South Florida, The Charles Stark Draper Laboratory, Inc.
    Inventors: Stuart Richard Hart, Mario Alves Simoes, Philip James Hipol, Kevin Hufford
  • Publication number: 20170100564
    Abstract: The device and methods described herein relate to a seeping flow catheter. The seeping flow catheter includes a porous material. The inner face of the porous material defines the lumen of the catheter. The porous material is configured such that fluid can flow along the length of the catheter, between the inner face and outer face of the porous material. As the fluid flows through the porous material, the fluid can seep into the lumen of the catheter through the inner face or out of the catheter through the outer face of the porous material. Portions of the inner or outer face can include a lining that substantial reduces the perfusion of the fluid through the lined areas.
    Type: Application
    Filed: January 13, 2015
    Publication date: April 13, 2017
    Inventors: Joseph L. Charest, James Hsiao, Christopher DiBiasio, Kevin A. Hufford
  • Publication number: 20160022304
    Abstract: A laparoscopy tool includes a sheath and a control wire slideably disposed within a lumen of the sheath. The sheath has a diameter of less than 1.6 mm and is introduced through an abdominal incision. A handle axially displaces the control wire within the lumen and operates a conventional tip with wire-controlled opposing jaws that is introduced through the umbilicus and has a bore formed in its trailing end. A first set of blades in the bore engage grooves formed in the leading end of the control wire and a second set of blades engages the sheath to prevent sheath retraction. A cam displaces the second set of blades away from the sheath for sheath introduction and removal, and toward the sheath to prevent sheath retraction. The tip is removed through the umbilicus and the tool is removed through the abdominal incision when the surgery is completed.
    Type: Application
    Filed: October 2, 2015
    Publication date: January 28, 2016
    Inventors: Stuart Richard Hart, Mario Alves Simoes, Philip James Hipol, Kevin Hufford
  • Patent number: 9186167
    Abstract: A laparoscopy tool includes a sheath and a control wire slideably disposed within a lumen of the sheath. The sheath has a diameter of less than 1.6 mm and is introduced through an abdominal incision. A handle axially displaces the control wire within the lumen and operates a conventional tip with wire-controlled opposing jaws that is introduced through the umbilicus and has a bore formed in its trailing end. A first set of blades in the bore engage grooves formed in the leading end of the control wire and a second set of blades engages the sheath to prevent sheath retraction. A cam displaces the second set of blades away from the sheath for sheath introduction and removal, and toward the sheath to prevent sheath retraction. The tip is removed through the umbilicus and the tool is removed through the abdominal incision when the surgery is completed.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: November 17, 2015
    Assignees: University of South Florida, The Charles Stark Draper Laboratory, Inc.
    Inventors: Stuart Richard Hart, Mario A. Simoes, Philip James Hipol, Kevin Hufford
  • Publication number: 20150157497
    Abstract: The present disclosure describes a catheter guide tool. More particularly, the catheter guide tool is a bi-stable device used for the insertion and advancement of a catheter. The catheter guide tool includes a gimbal. A guide axis runs through the gimbal. A catheter advancement mechanism is coupled to the gimbal and configured to advance the catheter along the guide axis. The guide tool also includes a pivot assembly coupling the gimbal to a support platform. The pivot assembly is configured to pivot the guide axis from a first position perpendicular to a target surface to a second position tangential to the target surface along a single primary plane of rotation of the gimbal.
    Type: Application
    Filed: December 8, 2014
    Publication date: June 11, 2015
    Inventors: Kevin Hufford, Christopher V. Trainor
  • Publication number: 20140206940
    Abstract: The method and system disclosed herein uses a pulsatile, dilatory bubble at the tip of a catheter to facilitate tissue separation and ease catheter insertion for, among other applications, delivery of therapeutics to the posterior of the eye while reducing procedure-related trauma. In some implementations, the method is extended to other dilatory and catheter-insertion applications elsewhere in the body. In brief, the disclosure discusses iteratively injecting liquid through a catheter to form a bubble near the distal tip of the catheter. The liquid is withdrawn to create a void, and the catheter is advanced into the void. The process is repeated until the distal tip of the catheter reaches the target location.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 24, 2014
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventor: Kevin A. Hufford
  • Publication number: 20140190884
    Abstract: An compact hydraulic manifold for transporting shear sensitive fluids is provided. A channel network can include a trunk and branch architecture coupled to a bifurcation architecture. Features such as tapered channel walls, curvatures and angles of channels, and zones of low fluid pressure can be used to reduce the size while maintaining wall shear rates within a narrow range. A hydraulic manifold can be coupled to a series of microfluidic layers to construct a compact microfluidic device.
    Type: Application
    Filed: January 8, 2013
    Publication date: July 10, 2014
    Applicant: The Charles Stark Draper Laboratory
    Inventors: Christopher DiBiasio, Joseph L. Charest, Jeffrey T. Borenstein, Ernest S. Kim, Daniel I. Harjes, Kevin Hufford
  • Publication number: 20140074135
    Abstract: A laparoscopy tool includes a sheath and a control wire slideably disposed within a lumen of the sheath. The sheath has a diameter of less than 1.6 mm and is introduced through an abdominal incision. A handle axially displaces the control wire within the lumen and operates a conventional tip with wire-controlled opposing jaws that is introduced through the umbilicus and has a bore formed in its trailing end. A first set of blades in the bore engage grooves formed in the leading end of the control wire and a second set of blades engages the sheath to prevent sheath retraction. A cam displaces the second set of blades away from the sheath for sheath introduction and removal, and toward the sheath to prevent sheath retraction. The tip is removed through the umbilicus and the tool is removed through the abdominal incision when the surgery is completed.
    Type: Application
    Filed: October 14, 2013
    Publication date: March 13, 2014
    Applicants: The Charles Stark Draper Laboratory, Inc., University of South Florida
    Inventors: Stuart Richard Hart, Mario A. Simoes, Philip James Hipol, Kevin Hufford
  • Publication number: 20140073992
    Abstract: Apparatuses and methods are disclosed herein for extracting bodily fluids. The apparatus consists of a housing, a releasable lancet stored in the housing, an inlet flow channel formed in the housing, a mechanically powered vacuum generator, and a storage area formed in the housing. The releasable lancet is released to pierce the skin of the subject to allow fluid to be extracted from the subject. The vacuum generator generates a partial vacuum within the inlet flow channel. After the lancet has pierced the skin of the subject, the partial vacuum draws fluid from the subject and into the inlet flow channel. The storage area is in fluid connection with the inlet flow channel, and receives the fluid drawn from the subject from the inlet flow channel.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Inventors: Kevin A. Hufford, Hoi-Cheong S. Sun
  • Patent number: 8321075
    Abstract: Biodynamic feedthrough in a master control system can be mitigated. An accelerometer is used to measure the acceleration of an environment. In one embodiment, mitigation damping forces can then be determined based on the velocity of an effector of a haptic manipulator and the measured accelerations. The haptic manipulator applies the mitigation damping forces as force feedback. In another embodiment, biodynamic feedthrough can be filtered from the input signal. Parameters for a model can be accessed based on the position of the effector, and the model can be used to predict biodynamic feedthrough from the measured accelerations.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: November 27, 2012
    Assignee: SRI International
    Inventors: Thomas Low, Kevin Hufford