Patents by Inventor Kevin J. Powell

Kevin J. Powell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210170162
    Abstract: Disclosed herein are heart pumps that can include a catheter body and an impeller coupled with a distal end of the catheter body. The impeller can include a tip that is resealable or that includes a resealable member. The heart pump can also include a diffuser disposed between the distal end of the catheter body and the impeller, wherein the diffuser includes a flow directing surface.
    Type: Application
    Filed: February 11, 2021
    Publication date: June 10, 2021
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Publication number: 20210128014
    Abstract: The present invention is directed to locating and imaging with a swallowable sensor device disposed in a patient. The swallowable sensor device transmits an acoustic signal from inside a patient's body. A plurality of sensing elements receive the acoustic signal. A computation module determines a location of the swallowable sensor device with respect to the plurality of sensing elements based on the acoustic signal received by at least a subset of the plurality of sensing elements. A three-dimensional image of an interior portion of the patient can also be formed based on the received acoustic signal. The three-dimensional image may be formed by stereoscopically displaying two two-dimensional images of the interior portion, wherein the two two-dimensional images correspond to the swallowable sensor device being located at two different locations. Alternatively, the three-dimensional image may be formed by computing three-dimensional pixels of the interior portion.
    Type: Application
    Filed: December 31, 2020
    Publication date: May 6, 2021
    Inventors: Michael R. ARNESON, William R. BRANDY, Roger A. DAVENPORT, Kevin J. POWELL
  • Patent number: 10960116
    Abstract: Disclosed herein are heart pumps that can include a catheter body and an impeller coupled with a distal end of the catheter body. The impeller can include a tip that is resealable or that includes a resealable member. The heart pump can also include a diffuser disposed between the distal end of the catheter body and the impeller, wherein the diffuser includes a flow directing surface.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: March 30, 2021
    Assignees: TCI LLC, THE PENNS STATE RESEARCH FOUNDATION
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Publication number: 20190184078
    Abstract: Disclosed herein are heart pumps that can include a catheter body and an impeller coupled with a distal end of the catheter body. The impeller can include a tip that is resealable or that includes a resealable member. The heart pump can also include a diffuser disposed between the distal end of the catheter body and the impeller, wherein the diffuser includes a flow directing surface.
    Type: Application
    Filed: February 21, 2019
    Publication date: June 20, 2019
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Patent number: 10265447
    Abstract: Disclosed herein is a method of pumping blood in a patient. The method includes inserting an impeller housing and impeller into the patient, the impeller disposed within the impeller housing and having a longitudinal axis, positioning the impeller housing and the impeller at a treatment location in the patient, activating an adjustment device at a proximal end portion of the heart pump outside the patient to provide relative motion between the impeller housing and the impeller along the longitudinal axis, and pumping blood through the impeller housing along the longitudinal axis.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 23, 2019
    Assignees: TC1 LLC, The Penn State Research Foundation
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Publication number: 20180153385
    Abstract: An ingestible image scanning pill captures high resolution images of the GI tract as it passes through. Images communicated externally have exact location determination. Image processing software discards duplicate information and stitches images together, line scan by line scan, to replicate a complete GI tract as if it were stretched out in a straight line. A fully linear image is displayed to a medical professional as if the GI tract had been stretched in a straight line, cut open, laid flat out on a bench for viewing—all without making any incisions in a live patient.
    Type: Application
    Filed: October 16, 2017
    Publication date: June 7, 2018
    Applicant: INNURVATION, INC.
    Inventors: Michael ARNESON, William R. BANDY, Kevin J. POWELL, Kenneth E. SALSMAN, Devon TIRPACK
  • Patent number: 9962475
    Abstract: Disclosed herein are heart pumps that can include a catheter body and an impeller coupled with a distal end of the catheter body. The impeller can include a tip that is resealable or that includes a resealable member. The heart pump can also include a diffuser disposed between the distal end of the catheter body and the impeller, wherein the diffuser includes a flow directing surface.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: May 8, 2018
    Assignees: TC1 LLC, THE PENN STATE RESEARCH FOUNDATION
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Publication number: 20180092221
    Abstract: Methods and systems for manufacturing a swallowable sensor device are disclosed. Such a method includes mechanically coupling a plurality of internal components, wherein the plurality of internal components includes a printed circuit board having a plurality of projections extending radially outward. A cavity is filled with a potting material, and the mechanically coupled components are inserted into the cavity. The cavity may be pre-filled with the potting material, or may be filled after the mechanically coupled components have been inserted therein. A distal end of each projection abuts against a wall of the cavity thereby preventing the potting material from covering each distal end. The cavity is sealed with a cap causing the potting material to harden within the sealed cavity to form a housing of the swallowable sensor device, wherein the distal end of each projection is exposed to an external environment of the swallowable sensor device.
    Type: Application
    Filed: July 12, 2017
    Publication date: March 29, 2018
    Applicant: Innurvation, Inc.
    Inventors: Michael R. ARNESON, William R. BANDY, Roger A. DAVENPORT, Kevin J. POWELL, Michael C. SLOAN
  • Publication number: 20180085028
    Abstract: The present invention is directed to locating and imaging with a swallowable sensor device disposed in a patient. The swallowable sensor device transmits an acoustic signal from inside a patient's body. A plurality of sensing elements receive the acoustic signal. A computation module determines a location of the swallowable sensor device with respect to the plurality of sensing elements based on the acoustic signal received by at least a subset of the plurality of sensing elements. A three-dimensional image of an interior portion of the patient can also be formed based on the received acoustic signal. The three-dimensional image may be fanned by stereoscopically displaying two two-dimensional images of the interior portion, wherein the two two-dimensional images correspond to the swallowable sensor device being located at two different locations. Alternatively, the three-dimensional image may be formed by computing three-dimensional pixels of the interior portion.
    Type: Application
    Filed: August 7, 2017
    Publication date: March 29, 2018
    Inventors: Michael R. ARNESON, Willam R. Bandy, Roger A. Davenport, Kevin J. Powell
  • Publication number: 20170296719
    Abstract: Disclosed herein are heart pumps that can include a catheter body and an impeller coupled with a distal end of the catheter body. The impeller can include a tip that is resealable or that includes a resealable member. The heart pump can also include a diffuser disposed between the distal end of the catheter body and the impeller, wherein the diffuser includes a flow directing surface.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 19, 2017
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Patent number: 9788708
    Abstract: An ingestible image scanning pill captures high resolution images of the GI tract as it passes through. Images communicated externally have exact location determination. Image processing software discards duplicate information and stitches images together, line scan by line scan, to replicate a complete GI tract as if it were stretched out in a straight line. A fully linear image is displayed to a medical professional as if the GI tract had been stretched in a straight line, cut open, laid flat out on a bench for viewing—all without making any incisions in a live patient.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: October 17, 2017
    Assignee: Innurvation, Inc.
    Inventors: Michael Arneson, William R. Bandy, Kevin J. Powell, Kenneth E. Salsman, Devon Tirpack
  • Patent number: 9730336
    Abstract: Methods and systems for manufacturing a swallowable sensor device are disclosed. Such a method includes mechanically coupling a plurality of internal components, wherein the plurality of internal components includes a printed circuit board having a plurality of projections extending radially outward. A cavity is filled with a potting material, and the mechanically coupled components are inserted into the cavity. The cavity may be pre-filled with the potting material, or may be filled after the mechanically coupled components have been inserted therein. A distal end of each projection abuts against a wall of the cavity thereby preventing the potting material from covering each distal end. The cavity is sealed with a cap causing the potting material to harden within the sealed cavity to form a housing of the swallowable sensor device, wherein the distal end of each projection is exposed to an external environment of the swallowable sensor device.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: August 8, 2017
    Assignee: Innurvation, Inc.
    Inventors: Michael R. Arneson, William R. Bandy, Roger A. Davenport, Kevin J. Powell, Michael C. Sloan
  • Publication number: 20160324404
    Abstract: An ingestible image scanning pill captures high resolution images of the GI tract as it passes through. Images communicated externally have exact location determination. Image processing software discards duplicate information and stitches images together, line scan by line scan, to replicate a complete GI tract as if it were stretched out in a straight line. A fully linear image is displayed to a medical professional as if the GI tract had been stretched in a straight line, cut open, laid flat out on a bench for viewing—all without making any incisions in a live patient.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 10, 2016
    Applicant: Innurvation, Inc.
    Inventors: Michael ARNESON, William R. Bandy, Kevin J. Powell, Kenneth E. Salsman, Devon Tirpack
  • Patent number: 9351632
    Abstract: An ingestible image scanning pill captures high resolution images of the GI tract as it passes through. Images communicated externally have exact location determination. Image processing software discards duplicate information and stitches images together, line scan by line scan, to replicate a complete GI tract as if it were stretched out in a straight line. A fully linear image is displayed to a medical professional as if the GI tract had been stretched in a straight line, cut open, laid flat out on a bench for viewing—all without making any incisions in a live patient.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: May 31, 2016
    Assignee: INNURVATION, INC.
    Inventors: Michael Arneson, William R. Bandy, Kevin J. Powell, Kenneth E. Salsman, Devon Tirpack
  • Publication number: 20160082167
    Abstract: Disclosed herein are heart pumps that can include a catheter body and an impeller coupled with a distal end of the catheter body. The impeller can include a tip that is resealable or that includes a resealable member. The heart pump can also include a diffuser disposed between the distal end of the catheter body and the impeller, wherein the diffuser includes a flow directing surface.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 24, 2016
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Patent number: 9138518
    Abstract: Disclosed herein are heart pumps that can include a catheter body and an impeller coupled with a distal end of the catheter body. The impeller can include a tip that is resealable or that includes a resealable member. The heart pump can also include a diffuser disposed between the distal end of the catheter body and the impeller, wherein the diffuser includes a flow directing surface.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: September 22, 2015
    Assignees: THORATEC CORPORATION, THE PENN STATE RESEARCH FOUNDATION
    Inventors: Robert L. Campbell, Jeremy J. Koncoski, Thomas M. Mallison, Mark W. McBride, Daniel Metrey, Eric C. Myer, Kevin J. Powell, Adam Roslund, Daniel A. Walters, William James Repka, Phyllis Yuen
  • Patent number: 9078580
    Abstract: An ingestible image scanning pill captures high resolution images of the GI tract as it passes through. Images communicated externally have exact location determination. Image processing software discards duplicate information and stitches images together, line scan by line scan, to replicate a complete GI tract as if it were stretched out in a straight line. A fully linear image is displayed to a medical professional as if the GI tract had been stretched in a straight line, cut open, laid flat out on a bench for viewing—all without making any incisions in a live patient.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: July 14, 2015
    Assignee: Innurvation, Inc.
    Inventors: Michael Arneson, William R. Brandy, Kevin J. Powell, Kenneth E. Salsman, Devon Tirpack
  • Publication number: 20150033552
    Abstract: Methods and systems for manufacturing a swallowable sensor device are disclosed. Such a method includes mechanically coupling a plurality of internal components, wherein the plurality of internal components includes a printed circuit board having a plurality of projections extending radially outward. A cavity is filled with a potting material, and the mechanically coupled components are inserted into the cavity. The cavity may be pre-filled with the potting material, or may be filled after the mechanically coupled components have been inserted therein. A distal end of each projection abuts against a wall of the cavity thereby preventing the potting material from covering each distal end. The cavity is sealed with a cap causing the potting material to harden within the sealed cavity to form a housing of the swallowable sensor device, wherein the distal end of each projection is exposed to an external environment of the swallowable sensor device.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 5, 2015
    Applicant: Innurvation, Inc.
    Inventors: Michael R. Arneson, William R. Bandy, Roger A. Davenport, Kevin J. Powell, Michael C. Sloan
  • Publication number: 20140343378
    Abstract: A method of communicating with an ingestible capsule includes detecting the location of the ingestible capsule, focusing a multi-sensor acoustic array on the ingestible capsule, and communicating an acoustic information exchange with the ingestible capsule via the multi-sensor acoustic array. The ingestible capsule includes a sensor that receives a stimulus inside the gastrointestinal tract of an animal, a bidirectional acoustic information communications module that transmits an acoustic information signal containing information from the sensor, and an acoustically transmissive encapsulation that substantially encloses the sensor and communications module, wherein the acoustically transmissive encapsulation is of ingestible size. The multi-sensor array includes a plurality of acoustic transducers that receive an acoustic signal from a movable device, and a plurality of delays, wherein each delay is coupled to a corresponding acoustic transducer.
    Type: Application
    Filed: December 23, 2013
    Publication date: November 20, 2014
    Applicant: INNURVATION, INC.
    Inventors: Michael R. ARNESON, William Robert BANDY, Roger Allen DAVENPORT, Kevin J. POWELL, Son NGO, Yuri OKUNEV, Robert SCHOBER
  • Patent number: 8869390
    Abstract: Methods and systems for manufacturing a swallowable sensor device are disclosed. Such a method includes mechanically coupling a plurality of internal components, wherein the plurality of internal components includes a printed circuit board having a plurality of projections extending radially outward. A cavity is filled with a potting material, and the mechanically coupled components are inserted into the cavity. The cavity may be pre-filled with the potting material, or may be filled after the mechanically coupled components have been inserted therein. A distal end of each projection abuts against a wall of the cavity thereby preventing the potting material from covering each distal end. The cavity is sealed with a cap causing the potting material to harden within the sealed cavity to form a housing of the swallowable sensor device, wherein the distal end of each projection is exposed to an external environment of the swallowable sensor device.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: October 28, 2014
    Assignee: Innurvation, Inc.
    Inventors: Michael R. Arneson, William R. Bandy, Roger A. Davenport, Kevin J. Powell, Michael C. Sloan