Patents by Inventor Kevin J. Shufon

Kevin J. Shufon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7541109
    Abstract: Passive water management techniques are provided in an air-breathing direct oxidation fuel cell system. A highly hydrophobic component with sub-micrometer wide pores is laminated to the catalyzed membrane electrolyte on the cathode side. This component blocks liquid water from traveling out of the cathode and instead causes the water to be driven through the polymer membrane electrolyte to the cell anode. The air-breathing direct oxidation fuel cell also includes a layer of cathode backing and additional cathode filter components on an exterior aspect of the cell cathode which lessen the water vapor escape rate from the cell cathode. The combination of the well laminated hydrophobic microporous layer, the thicker backing and the added filter layer, together defines a cathode structure of unique water management capacity, that enables to operate a DMFC with direct, controlled rate supply of neat (100%) methanol, without the need for any external supply or pumping of water.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 2, 2009
    Assignee: MTI MicroFuel Cells, Inc.
    Inventors: Xiaoming Ren, Frank W. Kovacs, Kevin J. Shufon, Shimshon Gottesfeld
  • Patent number: 7407721
    Abstract: A passive direct oxidation fuel cell system, which uses a high concentration fuel such as neat methanol as a direct feed to an anode aspect of the fuel cell, is provided. The fuel cell includes a passive water management capability, achieved by the combined functions of controlled fuel dosing, effective push back of liquid water from the cathode through the membrane electrolyte by a hydrophobic microporous layer well bonded to the cathode catalyst and the use of a thin ionomeric membrane. The rate of fuel delivery is controlled by a passive fuel transport barrier. Carbon dioxide management techniques are also provided.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: August 5, 2008
    Assignee: MTI MicroFuel Cells, Inc.
    Inventors: Xiaoming Ren, Juan J. Becerra, Robert S. Hirsch, Shimshon Gottesfeld, Frank W. Kovacs, Kevin J. Shufon
  • Patent number: 7314493
    Abstract: Fuel mixtures for direct methanol fuel cells are disclosed. The fuels include methanol and additives that react with water to produce methanol and other easily electro-oxidizable compounds including dimethyloxymethane, methylorthoformate, tetramethylorthocarbonate, trimethylborate, and tetramethylorthosilicate. Other additives to improve safety and efficiency of the fuel cell include sulfonated activated carbon particles and metal hydrides, such as LiAlH4, NaBH4, LiBH4, (CH3)2 NHBH3, NaAlH4, B2H6, NaCNBH3, CaH2, LiH, NaH, KH or sodium bis (2-methoxyethoxy) dihydridaluminate.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: January 1, 2008
    Assignee: The Gillette Company
    Inventors: Xiaoming Ren, Kevin J. Shufon, Frank W. Kovacs
  • Patent number: 7282293
    Abstract: Passive water management techniques are provided in an air-breathing direct oxidation fuel cell system. A highly hydrophobic component with sub-micrometer wide pores is laminated to the catalyzed membrane electrolyte on the cathode side. This component blocks liquid water from traveling out of the cathode and instead causes the water to be driven through the polymer membrane electrolyte to the cell anode. The air-breathing direct oxidation fuel cell also includes a layer of cathode backing and additional cathode filter components on an exterior aspect of the cell cathode which lessen the water vapor escape rate from the cell cathode. The combination of the well laminated hydrophobic microporous layer, the thicker backing and the added filter layer, together defines a cathode structure of unique water management capacity, that enables to operate a DMFC with direct, controlled rate supply of neat (100%) methanol, without the need for any external supply or pumping of water.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: October 16, 2007
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: Xiaoming Ren, Frank W. Kovacs, Kevin J. Shufon, Shimshon Gottesfeld
  • Publication number: 20040209154
    Abstract: Passive water management techniques are provided in an air-breathing direct oxidation fuel cell system. A highly hydrophobic component with sub-micrometer wide pores is laminated to the catalyzed membrane electrolyte on the cathode side. This component blocks liquid water from traveling out of the cathode and instead causes the water to be driven through the polymer membrane electrolyte to the cell anode. The air-breathing direct oxidation fuel cell also includes a layer of cathode backing and additional cathode filter components on an exterior aspect of the cell cathode which lessen the water vapor escape rate from the cell cathode. The combination of the well laminated hydrophobic microporous layer, the thicker backing and the added filter layer, together defines a cathode structure of unique water management capacity, that enables to operate a DMFC with direct, controlled rate supply of neat (100%) methanol, without the need for any external supply or pumping of water.
    Type: Application
    Filed: June 4, 2003
    Publication date: October 21, 2004
    Inventors: Xiaoming Ren, Frank W. Kovacs, Kevin J. Shufon, Shimshon Gottesfeld
  • Publication number: 20040209136
    Abstract: A passive direct oxidation fuel cell system, which uses a high concentration fuel such as neat methanol as a direct feed to an anode aspect of the fuel cell is provided. The fuel cell includes a passive water management capability, achieved by the combined functions of controlled fuel dosing, effective bucking of liquid water from the cathode into the membrane electrolyte by a hydrophobic microporous layer well bonded the cathode catalyst and the use of a thin ionomeric membrane. These functions maintain water within the membrane and at the anode portion of the fuel cell even when only neat methanol is fed to, or contained in the anode chamber. One embodiment of the fuel cell system includes a methanol delivery film, which effects a phase change from the liquid fuel contained within a fuel reservoir to a vaporous fuel that is presented to the anode aspect of the catalyzed membrane electrolyte. Alternatively, liquid fuel delivery is controlled by a hydrophilic microporous layer.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 21, 2004
    Inventors: Xiaoming Ren, Juan J. Becerra, Robert S. Hirsch, Shimshon Gottesfeld, Frank W. Kovacs, Kevin J. Shufon