Patents by Inventor Kevin K. Ennett

Kevin K. Ennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210290288
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Application
    Filed: June 10, 2021
    Publication date: September 23, 2021
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Patent number: 11058474
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: July 13, 2021
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Patent number: 10918434
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: February 16, 2021
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
  • Publication number: 20180250059
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.
    Type: Application
    Filed: May 3, 2018
    Publication date: September 6, 2018
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
  • Patent number: 9987070
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: June 5, 2018
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
  • Publication number: 20170354454
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Application
    Filed: August 28, 2017
    Publication date: December 14, 2017
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Patent number: 9775663
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 3, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Publication number: 20140316400
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Application
    Filed: March 11, 2014
    Publication date: October 23, 2014
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Publication number: 20140276765
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan