Patents by Inventor Kevin Kashefi

Kevin Kashefi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967523
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups selected from alkene, alkyne, ketone, alcohol, ester, or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiangjin Xie, Kevin Kashefi
  • Patent number: 11955382
    Abstract: Methods and apparatus for forming a reverse selective etch stop layer are disclosed. Some embodiments of the disclosure provide interconnects with lower resistance than methods which utilize non-selective (e.g., blanket) etch stop layers. Some embodiments of the disclosure utilize reverse selective etch stop layers within a subtractive etch scheme. Some embodiments of the disclosure selectively deposit the etch stop layer by passivating the surface of the metal material.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Kashefi, Alexander Jansen, Mehul Naik, He Ren, Lu Chen, Feng Chen
  • Patent number: 11952655
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a physical vapor deposition processing chamber comprises a chamber body defining a processing volume, a substrate support disposed within the processing volume and comprising a substrate support surface configured to support a substrate, a power supply configured to energize a target for sputtering material toward the substrate, an electromagnet operably coupled to the chamber body and positioned to form electromagnetic filed lines through a sheath above the substrate during sputtering for directing sputtered material toward the substrate, and a controller operably coupled to the physical vapor deposition processing chamber for controlling the electromagnet based on a recipe comprising a pulsing schedule for pulsing the electromagnet during operation to control directionality of ions relative to a feature on the substrate.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: April 9, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kevin Kashefi, Xiaodong Wang, Suhas Bangalore Umesh, Zheng Ju, Jiajie Cen
  • Publication number: 20240038541
    Abstract: Methods for cleaning oxides from a substrate surface are performed without affecting low-k dielectric or carbon materials on the substrate. In some embodiments, the method may include performing a preclean process with a chlorine-based soak to remove oxides from a surface of a substrate in a back end of the line (BEOL) process and treating the surface of the substrate with a remote plasma with a hydrogen gas and at least one inert gas to remove residual chlorine residue from the surface of the substrate without damaging low-k dielectric material or carbon material on the substrate.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 1, 2024
    Inventors: Jiajie CEN, Xiaodong WANG, Kevin KASHEFI, Shi YOU
  • Patent number: 11848229
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups, at least one functional group selected from amino groups, hydroxyl groups, ether linkages or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: December 19, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
  • Publication number: 20230313364
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a physical vapor deposition processing chamber comprises a chamber body defining a processing volume, a substrate support disposed within the processing volume and comprising a substrate support surface configured to support a substrate, a power supply configured to energize a target for sputtering material toward the substrate, an electromagnet operably coupled to the chamber body and positioned to form electromagnetic filed lines through a sheath above the substrate during sputtering for directing sputtered material toward the substrate, and a controller operably coupled to the physical vapor deposition processing chamber for controlling the electromagnet based on a recipe comprising a pulsing schedule for pulsing the electromagnet during operation to control directionality of ions relative to a feature on the substrate.
    Type: Application
    Filed: May 5, 2022
    Publication date: October 5, 2023
    Inventors: Kevin KASHEFI, Xiaodong Wang, Suhas Bangalore Umesh, Zheng Ju, Jiajie Cen
  • Patent number: 11776806
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: October 3, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xi Cen, Yakuan Yao, Yiming Lai, Kai Wu, Avgerinos V. Gelatos, David T. Or, Kevin Kashefi, Yu Lei, Lin Dong, He Ren, Yi Xu, Mehul Naik, Hao Chen, Mang-Mang Ling
  • Publication number: 20230253248
    Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. The methods include selectively depositing a self-assembled monolayer (SAM) on the bottom of the gap. The SAM comprises a hydrocarbon having a formula of H—C?C—R, wherein R is a linear alkyl chain or aryl group comprising from 1 to 20 carbon atoms or a formula of R?C?CR?, wherein R? and R? independently include a linear alkyl chain or aryl group comprising from 1 to 20 carbon atoms A barrier layer is formed on the SAM before selectively depositing a metal liner on the barrier layer. The SAM is removed after selectively depositing the metal liner on the barrier layer.
    Type: Application
    Filed: March 8, 2023
    Publication date: August 10, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Yang Zhou, Yong Jin Kim, Ge Qu, Zhiyuan Wu, Carmen Leal Cervantes, Feng Chen, Kevin Kashefi, Bhaskar Jyoti Bhuyan, Drew Phillips, Aaron Dangerfield
  • Publication number: 20230212747
    Abstract: Methods and apparatus for self-assembled monolayer (SAM) deposition are provided herein. In some embodiments, an apparatus for self-assembled monolayer (SAM) deposition includes: a chamber enclosing a processing volume; a substrate support disposed in the chamber and configured to support a substrate in the processing volume; a gas distribution system coupled to the chamber and configured to distribute a process gas into the processing volume; a first SAM precursor source fluidly coupled to the gas distribution system to provide a first SAM precursor as a part of the process gas; and a second SAM precursor source fluidly coupled to the gas distribution system to provide a second SAM precursor, different than the first SAM precursor, as a part of the process gas, wherein the first and second SAM precursor sources are independently controllable to control a relative percentage of the first and second SAM precursors in the process gas with respect to each other.
    Type: Application
    Filed: November 11, 2022
    Publication date: July 6, 2023
    Inventors: Kevin KASHEFI, Joel Minster HUSTON, Michael Lee MCSWINEY, Carmen LEAL CERVANTES, Yongjin KIM, Drew William PHILLIPS, Mark Joseph SALY
  • Publication number: 20230197508
    Abstract: Methods for selectively depositing a self-assembled monolayer (SAM) on metallic surfaces are disclosed. Some embodiments of the disclosure utilize phenanthroline or a phenanthroline derivative to form the self-assembled monolayer. Some embodiments selective form the self-assembled monolayer on tungsten or molybdenum. Some embodiments utilize the self-assembled monolayer to selectively deposit on dielectric surfaces over metallic surfaces.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Xiangjin Xie, Kevin Kashefi
  • Publication number: 20230187204
    Abstract: Provided are methods for pre-cleaning a substrate. A substrate having tungsten oxide (WOx) thereon is soaked in tungsten fluoride (WF6), which reduces the tungsten oxide (WOx) to tungsten (W). Subsequently, the substrate is treated with hydrogen, e.g., plasma treatment or thermal treatment, to reduce the amount of fluorine present so that fluorine does not invade the underlying insulating layer.
    Type: Application
    Filed: June 20, 2022
    Publication date: June 15, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Xiaodong Wang, Kevin Kashefi, Rongjun Wang, Shi You, Keith T. Wong, Yuchen Liu, Ya-Hsi Hwang, Jean Lu
  • Publication number: 20230126055
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups, at least one functional group selected from amino groups, hydroxyl groups, ether linkages or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
  • Publication number: 20230132200
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups selected from alkene, alkyne, ketone, hydroxyl, aldehyde, or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
  • Publication number: 20230115211
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups selected from alkene, alkyne, ketone, alcohol, ester, or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Application
    Filed: October 11, 2021
    Publication date: April 13, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Xiangjin Xie, Kevin Kashefi
  • Publication number: 20230072614
    Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. A self-assembled monolayer (SAM) is formed on the bottom of the gap, and a barrier layer is formed on the SAM before selectively depositing a metal liner on the barrier layer. The SAM is removed after selectively depositing the metal liner on the barrier layer.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Ge Qu, Zhiyuan Wu, Feng Chen, Carmen Leal Cervantes, Yong Jin Kim, Kevin Kashefi, Xianmin Tang
  • Publication number: 20220275501
    Abstract: Methods of surface pretreatment during selective deposition are disclosed. One or more embodiment of the disclosure provides surface pretreatments which facilitate the removal of blocking layers. Some embodiments of the disclosure include a surface pretreatment comprising exposure of a substrate with a first surface and a second surface to modify the first surface, a blocking layer is deposited on the modified first surface, a film is selectively deposited on the second surface over the blocking layer, and the blocking layer is removed.
    Type: Application
    Filed: February 28, 2022
    Publication date: September 1, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Carmen Leal Cervantes, Yong Jin Kim, Kevin Kashefi
  • Publication number: 20220270871
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
    Type: Application
    Filed: May 12, 2022
    Publication date: August 25, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Xi Cen, Yakuan Yao, Yiming Lai, Kai Wu, Avgerinos V. Gelatos, David T. Or, Kevin Kashefi, Yu Lei, Lin Dong, He Ren, Yi Xu, Mehul Naik, Hao Chen, Mang-Mang Ling
  • Patent number: 11380536
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: July 5, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xi Cen, Yakuan Yao, Yiming Lai, Kai Wu, Avgerinos V. Gelatos, David T. Or, Kevin Kashefi, Yu Lei, Lin Dong, He Ren, Yi Xu, Mehul Naik, Hao Chen, Mang-Mang Ling
  • Publication number: 20220181204
    Abstract: Methods and apparatus for forming a reverse selective etch stop layer are disclosed. Some embodiments of the disclosure provide interconnects with lower resistance than methods which utilize non-selective (e.g., blanket) etch stop layers. Some embodiments of the disclosure utilize reverse selective etch stop layers within a subtractive etch scheme. Some embodiments of the disclosure selectively deposit the etch stop layer by passivating the surface of the metal material.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Kevin Kashefi, Alexander Jansen, Mehul Naik, He Ren, Lu Chen, Feng Chen
  • Publication number: 20170062522
    Abstract: Provided are selector elements having snapback characteristics and non-volatile memory cells comprising such selector elements. To achieve its snapback characteristic, a selector element may include a dielectric layer comprising an alloy of two or more materials. In the same or other embodiments, the selector element may include a doped electrode, such carbon electrodes doped with silicon, germanium, and/or selenium. Concentrations of different materials forming an alloy may vary throughout the thickness of the dielectric layer. For example, the concentration of the first one alloy material may be higher in the center of the dielectric layer than near the interfaces of the dielectric layer with the electrodes. Some examples of this alloy material include germanium, indium, and aluminum. Examples of other materials in the same alloy include silicon, gallium, arsenic, and antimony. In some embodiments, the alloy is formed by three or more elements, such as indium gallium arsenic.
    Type: Application
    Filed: August 12, 2016
    Publication date: March 2, 2017
    Applicant: Intermolecular, Inc.
    Inventors: Salil Mujumdar, Abhijit Pethe, Ashish Bodke, Kevin Kashefi