Patents by Inventor Kevin L. Gunderson

Kevin L. Gunderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970734
    Abstract: A composition includes a nanopore including first and second sides and an aperture, nucleotides each including an elongated tag, and a first polynucleotide that is complementary to a second polynucleotide. A polymerase can be disposed adjacent to the first side of the nanopore and configured to add nucleotides to the first polynucleotide based on a sequence of the second polynucleotide. A permanent tether can include a head region anchored to the polymerase, a tail region, and an elongated body disposed therebetween that occurs in the aperture of the nanopore. A first moiety can be disposed on the elongated body that binds to the elongated tag of a first nucleotide upon which the polymerase is acting. A reporter region can be disposed on the elongated body that indicates when the first nucleotide is complementary or is not complementary to a next nucleotide in the sequence of the second polynucleotide.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 30, 2024
    Assignee: Illumina, Inc.
    Inventors: Kevin L Gunderson, Jeffrey G. Mandell
  • Patent number: 11965158
    Abstract: Embodiments provided herein relate to methods and compositions for next generation sequencing. Some embodiments include the preparation of a template library from a target nucleic acid using one-sided transposition, sequencing the template library, and capturing the contiguity information.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: April 23, 2024
    Assignee: Illumina, Inc.
    Inventors: Frank J. Steemers, Jeffrey S. Fisher, Kevin L. Gunderson, Sasan Amini, Christian Gloeckner
  • Publication number: 20240125792
    Abstract: A method for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding is disclosed.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 18, 2024
    Inventors: Mark S. CHEE, Kevin L. Gunderson, Michael Phillip Weiner
  • Patent number: 11959922
    Abstract: A method for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding is disclosed.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 16, 2024
    Assignee: Encodia, Inc.
    Inventors: Mark S. Chee, Kevin L. Gunderson, Michael Phillip Weiner
  • Publication number: 20240117418
    Abstract: A microarray is designed to capture one or more molecules of interest at each of a plurality of sites on a substrate. The sites comprise base pads, such as polymer base pads, that promote the attachment of the molecules at the sites. The microarray may be made by one or more patterning techniques to create a layout of base pads in a desired pattern. Further, the microarrays may include features to encourage clonality at the sites.
    Type: Application
    Filed: November 13, 2023
    Publication date: April 11, 2024
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20240042446
    Abstract: The present disclosure relates to an apparatus for preparing and treating macromolecules, e.g., peptides, polypeptides, and proteins for sequencing and/or analysis. An automated method for performing an automated assay for macromolecule analysis includes, inter alia, moving each of a plurality of reagents to a sample containing a solid support material and incubating the various reagents with the sample is provided. In some embodiments, the apparatus and automated methods are for use in treating and modifying a macromolecule or a plurality of macromolecules, (e.g., peptides, polypeptides, and proteins) for sequencing and/or analysis that employ barcoding and nucleic acid encoding of molecular recognition events, and/or detectable labels.
    Type: Application
    Filed: October 14, 2020
    Publication date: February 8, 2024
    Applicant: Encodia, Inc.
    Inventors: Timothy Scott BURCHAM, Mark S. CHEE, Kevin L. GUNDERSON
  • Patent number: 11879155
    Abstract: Methods and compositions for characterizing a target polynucleotide, including, characterizing the sequence of the target polynucleotide, using the fractional translocation steps of the target polynucleotide's translocation through a pore.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 23, 2024
    Assignee: Illumina, Inc.
    Inventors: Eric Stava, Jens H. Gundlach, Jeffrey G. Mandell, Kevin L. Gunderson, Ian M. Derrington, Hosein Mohimani
  • Patent number: 11873480
    Abstract: Embodiments provided herein relate to methods and compositions for preparing an immobilized library of barcoded DNA fragments of a target nucleic acid, identifying genomic variants, determining the contiguity information, phasing information, and methylation status of the target nucleic acid.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: January 16, 2024
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Frank J. Steemers, Kevin L. Gunderson, Fan Zhang, Jason Richard Betley, Niall Anthony Gormley, Wouter Meuleman, Jacqueline Weir, Avgousta Ioannou, Gareth Jenkins, Rosamond Jackson, Natalie Morrell, Dmitry K. Pokholok, Steven J. Norberg, Molly He, Amirali Kia, Igor Goryshin, Rigo Pantoja
  • Publication number: 20240011089
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 11, 2024
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Publication number: 20240011009
    Abstract: Provided herein are modified dipeptide cleavases for removing amino acid(s) from peptides, polypeptides, and proteins. Also provided are methods of using the modified dipeptide cleavases for treating polypeptides, and kits comprising the modified dipeptide cleavase. In some embodiments, the methods and the kits also include other components for macromolecule sequencing and/or analysis.
    Type: Application
    Filed: March 19, 2021
    Publication date: January 11, 2024
    Applicant: Encodia, Inc.
    Inventors: Kevin L. GUNDERSON, Robert C. JAMES, Lei SHI, Stephen VERESPY, III, Kevin DESAI
  • Publication number: 20240003896
    Abstract: The current document discusses a detection system comprising a mechanical-change sensor that exhibits one or more mechanical changes when specifically interacting with entities within a target, each entity having a type, a mechanical-change-to-signal transducer that transduces the one or more mechanical changes into a signal, and an analysis subsystem that determines the types of entities within the target using the signal.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 4, 2024
    Applicant: lllumina, Inc.
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Michael Gregory Keehan, Erin Christine Garcia, Jens H. Gundlach
  • Publication number: 20230406874
    Abstract: Embodiments of the present disclosure include methods and compositions for functionalizing molecules, such as oligonucleotides, with functional groups, including polyhistidine tags useful in affinity methods. Some embodiments include methods for modifying and purifying complex mixtures of molecules by exchange of functional tags.
    Type: Application
    Filed: August 1, 2023
    Publication date: December 21, 2023
    Inventors: Frank J. Steemers, Kevin L. Gunderson, Kerri York, Ryan Christopher Smith
  • Patent number: 11834704
    Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: December 5, 2023
    Assignee: Illumina, Inc.
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20230374493
    Abstract: Embodiments of the present invention relate to analyzing components of a cell. In some embodiments, the present invention relate to analyzing components of a single cell. In some embodiments, the methods and compositions relate to sequencing nucleic acids. In some embodiments, the methods and compositions relate to identifying and/or quantitiating nucleic acid, proteins, organelles, and/or cellular metabolites.
    Type: Application
    Filed: February 27, 2023
    Publication date: November 23, 2023
    Applicant: ILLUMINA, INC.
    Inventors: Kevin L. Gunderson, Frank J. Steemers, Jeffrey S. Fisher, Roberto Rigatti
  • Publication number: 20230340593
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods.
    Type: Application
    Filed: May 18, 2023
    Publication date: October 26, 2023
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Publication number: 20230340458
    Abstract: Methods and Kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Assays that do not require the cyclic transfer of information between a coding tag and a recording tag are also disclosed, including single cycle assays.
    Type: Application
    Filed: March 22, 2023
    Publication date: October 26, 2023
    Applicant: Encodia, Inc.
    Inventors: Mark S. CHEE, Kevin L. GUNDERSON, Michael Phillip WEINER, Lei SHI, Norihito MURANAKA
  • Publication number: 20230332215
    Abstract: The present disclosure relates to methods and kits for generating single cell barcodes and imparting them to the constituent molecules within a single cell. Additionally, methods to overlay sample barcode and spatial barcode information onto the single cell barcodes are also described. Generation of single cell barcodes is achieved by labeling the genomic DNA of a cell/nucleus with a small handful, preferably just a one or two cellular barcode probes (CBP) that can be amplified and propagated to label the constituent molecules within the cell. The disclosure finds utility in applications such as characterization of cellular heterogeneity, comprehensive profiling of tissue composition, characterization of adherent cells, discovery of new cell subtypes and functions of individual cells in the context of its microenvironment, and others.
    Type: Application
    Filed: May 23, 2023
    Publication date: October 19, 2023
    Applicant: Encodia, Inc.
    Inventors: Mark S. CHEE, Haibiao GONG, Kevin L. GUNDERSON
  • Patent number: 11788080
    Abstract: Provided herein are modified cleavases for removing amino acids from peptides, polypeptides, and proteins. Also provided are methods of using the modified cleavases for treating polypeptides, and kits comprising the modified cleavase. In some embodiments, the methods and the kits also include other components for macromolecule sequencing and/or analysis.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: October 17, 2023
    Assignee: Encodia, Inc.
    Inventors: Kevin Desai, Kevin L. Gunderson, Robert C. James, Lei Shi, Stephen Verespy, III
  • Patent number: 11782062
    Abstract: Kits and methods of using the kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Additional barcoding reagents, such as those for cycle-specific barcoding (e.g., “clocking”), compartment barcoding, combinatorial barcoding, spatial barcoding, or any combination thereof, may be included in the kits. The sample may comprise macromolecules, including peptides, polypeptides, and proteins, and the recording may generate molecular interaction and/or reaction information, and/or polypeptide sequence information.
    Type: Grant
    Filed: February 8, 2023
    Date of Patent: October 10, 2023
    Assignee: Encodia, Inc.
    Inventors: Mark S. Chee, John M. Beierle, Norihito Muranaka, Kevin L. Gunderson, Michael Phillip Weiner, Lei Shi, Robert C. James, Luca Monfregola
  • Patent number: 11760772
    Abstract: Embodiments of the present disclosure include methods and compositions for functionalizing molecules, such as oligonucleotides, with functional groups, including polyhistidine tags useful in affinity methods. Some embodiments include methods for modifying and purifying complex mixtures of molecules by exchange of functional tags.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: September 19, 2023
    Assignee: Illumina, Inc.
    Inventors: Frank J. Steemers, Kevin L. Gunderson, Kerri York, Ryan Christopher Smith