Patents by Inventor Kevin L. Ricketson

Kevin L. Ricketson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7922977
    Abstract: A method and apparatus for converting a hydrocarbon and oxygen containing gas feed stream to a product stream, such as syngas, including catalytically partially oxidizing the hydrocarbon feed stream over a catalyst bed. The catalyst bed has a downstream zone which is less resistant to flow than the upstream zone.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: April 12, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bang Cheng Xu, Sriram Ramani, Kevin L. Ricketson, Gloria I. Straguzzi, Larry D. Swinney, Joe D. Allison
  • Patent number: 6946114
    Abstract: Lanthanide-promoted rhodium-containing supported catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their manner of making and high efficiency processes for producing synthesis gas employing the new catalysts. A preferred catalyst comprises highly dispersed, high surface area rhodium on a granular zirconia support with an intermediate coating of a lanthanide metal and/or oxide thereof and is thermally conditioned during catalyst preparation. In a preferred syngas production process a stream of methane-containing gas and O2 is passed over a thermally conditioned, high surface area Rh/Sm/zirconia granular catalyst in a short contact time reactor to produce a mixture of carbon monoxide and hydrogen.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: September 20, 2005
    Assignee: ConocoPhillips Company
    Inventors: Joe D. Allison, Larry D. Swinney, Tianyan Niu, Kevin L. Ricketson, Daxiang Wang, Sriram Ramani, Gloria I. Straguzzi, David M. Minahan, Harold A. Wright, Baili Hu
  • Patent number: 6923922
    Abstract: A method for the recovery of rhodium from spent supported catalysts. In one embodiment, a method for recovering rhodium from a host material includes roasting the host material in air at a temperature sufficient to convert at least a portion of rhodium to Rh2O3, leaching the host material in a solution with a leaching constituent which is reactive with Rh2O3 to form a first intermediate species, reacting the first intermediate species in a solution with an acidifying constituent or complexing agent to form a second intermediate species, and purifying the second intermediate species. Preferably, the roasting temperature is approximately from 600° C. to 800° C. for 0.5 to 10 hours. In some embodiments, the host material is ground to particles in the range of 0.1 to 10 mm.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 2, 2005
    Assignee: ConocoPhillips Company
    Inventors: Zhen Chen, Kevin L. Ricketson, Baili Hu, Harold A. Wright, Joe D. Allison
  • Patent number: 6903139
    Abstract: Embodiments include a method and apparatus for producing synthesis gas in a catalytic partial oxidation reactor by adding hydrogen to the reactor feed stream.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: June 7, 2005
    Assignee: ConocoPhillips Company
    Inventors: Stephen R. Landis, Lisa M. Carmichael, Kevin L. Ricketson, Thomas R. Ruddy, II
  • Patent number: 6887456
    Abstract: A method and apparatus for converting a hydrocarbon and oxygen containing gas feed stream to a product stream, such as syngas, including catalytically partially oxidizing the hydrocarbon feed stream over a catalyst bed. The catalyst bed has a downstream section which is less resistant to flow than the upstream section.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: May 3, 2005
    Assignee: ConocoPhillips Company
    Inventors: Bang Chen Xu, Sriram Ramani, Kevin L. Ricketson, Gloria I. Straguzzi, Larry D. Swinney, Joe D. Allison
  • Publication number: 20040202607
    Abstract: A method for the recovery of rhodium from spent supported catalysts. In one embodiment, a method for recovering rhodium from a host material includes roasting the host material in air at a temperature sufficient to convert at least a portion of rhodium to Rh2O3, leaching the host material in a solution with a leaching constituent which is reactive with Rh2O3 to form a first intermediate species, reacting the first intermediate species in a solution with an acidifying constituent or complexing agent to form a second intermediate species, and purifying the second intermediate species. Preferably, the roasting temperature is approximately from 600° C. to 800° C. for 0.5 to 10 hours. In some embodiments, the host material is ground to particles in the range of 0.1 to 10 mm.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 14, 2004
    Applicant: ConocoPhillips Company
    Inventors: Zhen Chen, Kevin L. Ricketson, Baili Hu, Harold A. Wright, Joe D. Allison
  • Publication number: 20040171900
    Abstract: The present invention includes methods and apparatus for start-up a chemical reactor wherein at least a portion of the igniter is downstream from the reaction zone which needs to be ignited. Particularly, embodiments of the present invention include a partial oxidation reactor with an igniter downstream of the partial oxidation zone.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Applicant: ConocoPhillips Company
    Inventors: Daxiang Wang, Chad Ricketson, Gloria I. Straguzzi, Harold A. Wright, Larry D. Swinney, Joe D. Allison, Zhen Chen, Kevin L. Ricketson, Shang Y. Chen, Steven R. McDonald
  • Patent number: 6764662
    Abstract: A method for the recovery of rhodium from spent supported catalysts. In one embodiment, a method for recovering rhodium from a host material includes roasting the host material in air at a temperature sufficient to convert at least a portion of rhodium to Rh2O3, leaching the host material in a solution with a leaching constituent which is reactive with Rh2O3 to form a first intermediate species, reacting the first intermediate species in a solution with an acidifying constituent or complexing agent to form a second intermediate species, and purifying the second intermediate species. Preferably, the roasting temperature is approximately from 600° C. to 800° C. for 0.5 to 10 hours. In some embodiments, the host material is ground to particles in the range of 0.1 to 10 mm.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: July 20, 2004
    Assignee: ConocoPhillips Company
    Inventors: Zhen Chen, Kevin L. Ricketson, Baili Hu, Harold A. Wright, Joe D. Allison
  • Publication number: 20040102531
    Abstract: Embodiments include a method and apparatus for producing synthesis gas in a catalytic partial oxidation reactor by adding hydrogen to the reactor feed stream.
    Type: Application
    Filed: November 21, 2002
    Publication date: May 27, 2004
    Applicant: Conoco Inc.
    Inventors: Stephen R. Landis, Lisa M. Carmichael, Kevin L. Ricketson, Thomas R. Ruddy
  • Publication number: 20030236440
    Abstract: A method for the recovery of rhodium from spent supported catalysts. In one embodiment, a method for recovering rhodium from a host material includes roasting the host material in air at a temperature sufficient to convert at least a portion of rhodium to Rh2O3, leaching the host material in a solution with a leaching constituent which is reactive with Rh2O3 to form a first intermediate species, reacting the first intermediate species in a solution with an acidifying constituent or complexing agent to form a second intermediate species, and purifying the second intermediate species. Preferably, the roasting temperature is approximately from 600° C. to 800° C. for 0.5 to 10 hours. In some embodiments, the host material is ground to particles in the range of 0.1 to 10 mm.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 25, 2003
    Applicant: Conoco Inc.
    Inventors: Zhen Chen, Kevin L. Ricketson, Baili Hu, Harold A. Wright, Joe D. Allison
  • Publication number: 20030083198
    Abstract: A method and apparatus for converting a hydrocarbon and oxygen containing gas feed stream to a product stream, such as syngas, including catalytically partially oxidizing the hydrocarbon feed stream over a catalyst bed. The catalyst bed has a downstream section which is less resistant to flow than the upstream section.
    Type: Application
    Filed: October 4, 2002
    Publication date: May 1, 2003
    Applicant: Conoco Inc.
    Inventors: Bang Chen Xu, Sriram Ramani, Kevin L. Ricketson, Gloria I. Straguzzi, Larry D. Swinney, Joe D. Allison
  • Publication number: 20020115730
    Abstract: Lanthanide-promoted rhodium-containing supported catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their manner of making and high efficiency processes for producing synthesis gas employing the new catalysts. A preferred catalyst comprises highly dispersed, high surface area rhodium on a granular zirconia support with an intermediate coating of a lanthanide metal and/or oxide thereof and is thermally conditioned during catalyst preparation. In a preferred syngas production process a stream of methane-containing gas and O2 is passed over a thermally conditioned, high surface area Rh/Sm/zirconia granular catalyst in a short contact time reactor to produce a mixture of carbon monoxide and hydrogen.
    Type: Application
    Filed: September 5, 2001
    Publication date: August 22, 2002
    Inventors: Joe D. Allison, Larry D. Swinney, Tianyan Niu, Kevin L. Ricketson, Daxiang Wang, Sriram Ramani, Gloria I. Straguzzi, David M. Minahan, Harold A. Wright, Baili Hu