Patents by Inventor Kevin Ludlum

Kevin Ludlum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953427
    Abstract: Frequency registration deviations occurring during a scan of a frequency or wavelength range by a spectroscopic analysis system can be corrected using passive and/or active approaches. A passive approach can include determining and applying mathematical conversions to a recorded field spectrum. An active approach can include modifying one or more operating parameters of the spectroscopic analysis system to reduce frequency registration deviation.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: April 9, 2024
    Assignee: Endress+Hauser Optical Analysis, Inc.
    Inventors: Alfred Feitisch, Xiang Liu, Kevin Ludlum, Mathias Schrempel
  • Patent number: 11754539
    Abstract: The present disclosure relates to a computer-implemented method for forecasting calibration spectra including a step of providing a machine learning model trained using historical calibration data corresponding to different gas species at different pressures. The computer-implemented method also includes steps of performing a calibration scan of one gas species at one pressure using an analyzer and generating calibration curves for the analyzer corresponding to one or multiple gas species at multiple pressures using the machine learning model and the calibration scan. Thereafter, a spectrum is obtained using the analyzer, and a concentration measurement is generated using the spectrum and at least one of the calibration curves.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: September 12, 2023
    Assignee: Endress+Hauser Optical Analysis, Inc.
    Inventors: Kevin Ludlum, Marc Winter, Benjamin Scherer, Xiang Liu
  • Patent number: 11169357
    Abstract: A light source module may include a base with a support feature protruding from a surface of the base and securing a light source to direct radiation away from the surface. A lens cells may be attached proximate to the surface, optionally by being secured within a sleeve that is attached at one end to the surface. A multi-conductor part may include electrical conductors and a base temperature sensor that contacts the base. The base temperature sensor may be electrically connected to at least one of the plurality of conductive elements and further connected to an optical ignition safety protection system configured to interrupt current to the light source if the base temperature sensor indicates that a temperature of the light source is outside of a safe range.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 9, 2021
    Assignee: SpectraSensors, Inc.
    Inventors: Nicholas J. Croglio, Jr., Peter Scott, Doug Beyer, Kevin Ludlum, Keith Helbley, David Peter
  • Publication number: 20210318280
    Abstract: The present disclosure relates to a computer-implemented method for forecasting calibration spectra including a step of providing a machine learning model trained using historical calibration data corresponding to different gas species at different pressures. The computer-implemented method also includes steps of performing a calibration scan of one gas species at one pressure using an analyzer and generating calibration curves for the analyzer corresponding to one or multiple gas species at multiple pressures using the machine learning model and the calibration scan. Thereafter, a spectrum is obtained using the analyzer, and a concentration measurement is generated using the spectrum and at least one of the calibration curves.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 14, 2021
    Inventors: Kevin Ludlum, Marc Winter, Benjamin Scherer, Xiang Liu
  • Publication number: 20200271888
    Abstract: A light source module may include a base with a support feature protruding from a surface of the base and securing a light source to direct radiation away from the surface. A lens cells may be attached proximate to the surface, optionally by being secured within a sleeve that is attached at one end to the surface. A multi-conductor part may include electrical conductors and a base temperature sensor that contacts the base. The base temperature sensor may be electrically connected to at least one of the plurality of conductive elements and further connected to an optical ignition safety protection system configured to interrupt current to the light source if the base temperature sensor indicates that a temperature of the light source is outside of a safe range.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 27, 2020
    Inventors: Nicholas J. Croglio, JR., Peter Scott, Doug Beyer, Kevin Ludlum, Keith Helbley, David Peter
  • Publication number: 20170059477
    Abstract: Frequency registration deviations occurring during a scan of a frequency or wavelength range by a spectroscopic analysis system can be corrected using passive and/or active approaches. A passive approach can include determining and applying mathematical conversions to a recorded field spectrum. An active approach can include modifying one or more operating parameters of the spectroscopic analysis system to reduce frequency registration deviation.
    Type: Application
    Filed: August 3, 2016
    Publication date: March 2, 2017
    Inventors: Alfred Feitisch, Xiang Liu, Kevin Ludlum, Mathias Schrempel