Patents by Inventor Kevin M. NIEMAN

Kevin M. NIEMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10114086
    Abstract: A hybrid imaging system includes a magnetic resonance scanner and a second modality imaging system disposed in the same radio frequency isolation space. The second modality imaging system includes radiation detectors configured to detect at least one of high energy particles and high energy photons. In some embodiments a retractable radio frequency screen is selectively extendible into a gap between the magnetic resonance scanner and the second modality imaging system. In some embodiments shim coils are disposed with the magnetic resonance scanner and are configured to compensate for distortion of the static magnetic field of the magnetic resonance scanner produced by proximity of the second modality imaging system.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: October 30, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Daniel Gagnon, Michael A. Morich, Douglas M. Blakeley, Robert L. Zahn, Kevin M. Nieman
  • Patent number: 8441259
    Abstract: A magnetic resonance coil comprises a first set of coil elements (54, 56, 80) operatively connectable with a transmit channel (66, 74) to couple with a transmit region of sensitivity for a selected load at a magnetic field strength greater than 3 Tesla, and a second set of coil elements (52, 54, 82) operatively connectable with a receive channel (66, 74) to couple with a receive region of sensitivity for the selected load at the magnetic field strength greater than 3 Tesla. The first set of coil elements is arranged proximate to but not surrounding the transmit region of sensitivity, and the second set of coil elements is arranged proximate to but not surrounding the receive region of sensitivity. The first set of coil elements and the second set of coil elements having at least one coil element (52, 56) not in common.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 14, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Zhiyong Zhai, Robert Gauss, Eddy Yu Ping Wong, Michael A. Morich, Kevin M. Nieman, Gordon D. DeMeester
  • Publication number: 20110115483
    Abstract: A magnetic resonance coil comprises a first set of coil elements (54, 56, 80) operatively connectable with a transmit channel (66, 74) to couple with a transmit region of sensitivity for a selected load at a magnetic field strength greater than 3 Tesla, and a second set of coil elements (52, 54, 82) operatively connectable with a receive channel (66, 74) to couple with a receive region of sensitivity for the selected load at the magnetic field strength greater than 3 Tesla. The first set of coil elements is arranged proximate to but not surrounding the transmit region of sensitivity, and the second set of coil elements is arranged proximate to but not surrounding the receive region of sensitivity. The first set of coil elements and the second set of coil elements having at least one coil element (52, 56) not in common.
    Type: Application
    Filed: December 12, 2008
    Publication date: May 19, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Zhiyong Zhai, Robert Gauss, Eddy Yu Ping WONG, Michael A. Morich, Kevin M. Nieman, Gordon D. DeMeester
  • Publication number: 20080312526
    Abstract: A hybrid imaging system includes a magnetic resonance scanner and a second modality imaging system disposed in the same radio frequency isolation space. The second modality imaging system includes radiation detectors configured to detect at least one of high energy particles and high energy photons. In some embodiments a retractable radio frequency screen is selectively extendible into a gap between the magnetic resonance scanner and the second modality imaging system. In some embodiments shim coils are disposed with the magnetic resonance scanner and are configured to compensate for distortion of the static magnetic field of the magnetic resonance scanner produced by proximity of the second modality imaging system.
    Type: Application
    Filed: August 21, 2008
    Publication date: December 18, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Daniel GAGNON, Michael A. MORICH, Douglas M. BLAKELEY, Robert L. ZAHN, Kevin M. NIEMAN