Patents by Inventor Kevin McVey

Kevin McVey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11860601
    Abstract: A method for calibrating a computer-numerically-controlled machine can include capturing one or more images of at least a portion of the computer-numerically-controlled machine. The one or more images can be captured with at least one camera located inside an enclosure containing a material bed. A mapping relationship can be created which maps a pixel in the one or more images to a location within the computer-numerically controlled machine. The creation of the mapping relationship can include compensating for a difference in the one or more images relative to one or more physical parameters of the computer-numerically-controlled machine and/or a material positioned on the material bed. Related systems and/or articles of manufacture, including computer program products, are also provided.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: January 2, 2024
    Assignee: Glowforge Inc.
    Inventors: Daniel Shapiro, Mark Gosselin, Anthony Wright, Kevin McVey, Jared Kofron, Daniel Martinec, Brian Fioca, Taylor Vaughn
  • Patent number: 11860606
    Abstract: A method may include generating, by a camera having a view of an interior portion of a computer-numerically-controlled machine, an image comprising a pattern. The image can be transformed into a set of machine instructions for controlling the computer-numerically-controlled machine to effect a change in a material. The change can correspond to at least a portion of the pattern. At least one machine instruction from the set of machine instructions can be executed to control the computer-numerically-controlled machine to effect at least a portion of the change. The execution can include operating, in accordance with the at least one machine instruction, a tool coupled with the computer-numerically-controlled machine. The tool can be configured to effect the change on the material. Related systems and articles of manufacture, including computer program products, are also provided.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: January 2, 2024
    Assignee: Glowforge, Inc.
    Inventors: Daniel Shapiro, Mark Gosselin, Anthony Wright, Jonathan Park, Kevin McVey, Scott Haug, Rachael Ludwick, Daniel Martinec
  • Patent number: 11740608
    Abstract: A method may include projecting, onto a surface within a computer numerically controlled machine, a structured light having a known property. One or more sensors may generate an image of the structured light projected on the surface within the computer numerically controlled machine. One or more characteristics of the surface may be determined by comparing a property of the structured light shown in the image to the known property of the structured light. Examples of characteristics include a size, a distance to the surface, a height, a thickness, an angle of the surface, edges, surface properties, jigs, fiducial alignment markers, patterns encoding data, and visual designs on the surface of the material that are intended for reproductions. A surface map indicating the characteristics of the surface at various locations may be generated to enable, for example, a calibration, alignment, and/or optimization of the computer numerically controlled machine.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: August 29, 2023
    Assignee: Glowforge, Inc
    Inventors: Mark Gosselin, Daniel Shapiro, Penelope Ackerman, Daniel Martinec, Kevin McVey, Michael Natkin, Therese Seldon
  • Publication number: 20230173608
    Abstract: Disclosed embodiments include a head attached to a gantry. The head includes an optical assembly to focus a laser beam onto a surface of a material to be processed by a CNC machine and a measurement assembly with emitter(s) and detector(s), where the detector(s) are for measuring intensity of light emitted from the emitter(s) and reflected off the surface of the material. Processors are configured to (i) determine a material type of the material, (ii) determine a distance between the optical assembly and the material surface based on (a) measurement(s) of the intensity of the light emitted from the emitter(s) and reflected off the material surface, and (b) measurement parameter(s) associated with the determined material type, and (iii) control focusing of the laser beam onto the surface of the material based on the determined distance between the optical assembly and the surface of the material.
    Type: Application
    Filed: January 16, 2023
    Publication date: June 8, 2023
    Inventors: Mark Gosselin, William A. Marty, Haiyin Sun, Daniel Shapiro, Therese Seldon, Kevin McVey, Penelope Ackerman, Michael Natkin, Bonny P. Lau, Jonathan Daniel Park, Daniel Martinec
  • Publication number: 20230029940
    Abstract: Systems and methods disclosed herein include one or more computing devices configured to obtain one or more images of a material that has been placed at least partially within a CNC machine, where the one or more images are captured via one or more sensors associated with the CNC machine, determine one or more edges of the material based on the one or more images of the material, and determine whether the material can accommodate one or more placements of a design on the material based at least in part on the one or more edges of the material. Some embodiments additionally or alternatively include determining one or more material margins based on the one or more material edges, and determining whether the material can accommodate one or more placements of a design on the material based at least in part on the one or more material margins.
    Type: Application
    Filed: February 10, 2022
    Publication date: February 2, 2023
    Inventors: Daniel Shapiro, Mark Gosselin, Therese Seldon, Kevin McVey, Penelope Ackerman, Michael Natkin, Bonny P. Lau, Jonathan Daniel Park, Daniel Martinec
  • Publication number: 20220276632
    Abstract: A method may include generating, by a camera having a view of an interior portion of a computer-numerically-controlled machine, an image comprising a pattern. The image can be transformed into a set of machine instructions for controlling the computer-numerically-controlled machine to effect a change in a material. The change can correspond to at least a portion of the pattern. At least one machine instruction from the set of machine instructions can be executed to control the computer-numerically-controlled machine to effect at least a portion of the change. The execution can include operating, in accordance with the at least one machine instruction, a tool coupled with the computer-numerically-controlled machine. The tool can be configured to effect the change on the material. Related systems and articles of manufacture, including computer program products, are also provided.
    Type: Application
    Filed: February 14, 2022
    Publication date: September 1, 2022
    Inventors: Daniel Shapiro, Mark Gosselin, Anthony Wright, Jonathan Park, Kevin McVey, Scott Haug, Rachael Ludwick, Daniel Martinec
  • Publication number: 20220206464
    Abstract: A method may include projecting, onto a surface within a computer numerically controlled machine, a structured light having a known property. One or more sensors may generate an image of the structured light projected on the surface within the computer numerically controlled machine. One or more characteristics of the surface may be determined by comparing a property of the structured light shown in the image to the known property of the structured light. Examples of characteristics include a size, a distance to the surface, a height, a thickness, an angle of the surface, edges, surface properties, jigs, fiducial alignment markers, patterns encoding data, and visual designs on the surface of the material that are intended for reproductions. A surface map indicating the characteristics of the surface at various locations may be generated to enable, for example, a calibration, alignment, and/or optimization of the computer numerically controlled machine.
    Type: Application
    Filed: December 24, 2020
    Publication date: June 30, 2022
    Inventors: Mark Gosselin, Daniel Shapiro, Penelope Ackerman, Daniel Martinec, Kevin McVey, Michael Natkin, Therese Seldon
  • Publication number: 20220057770
    Abstract: A method for calibrating a computer-numerically-controlled machine can include capturing one or more images of at least a portion of the computer-numerically-controlled machine. The one or more images can be captured with at least one camera located inside an enclosure containing a material bed. A mapping relationship can be created which maps a pixel in the one or more images to a location within the computer-numerically controlled machine. The creation of the mapping relationship can include compensating for a difference in the one or more images relative to one or more physical parameters of the computer-numerically-controlled machine and/or a material positioned on the material bed. Related systems and/or articles of manufacture, including computer program products, are also provided.
    Type: Application
    Filed: September 1, 2021
    Publication date: February 24, 2022
    Inventors: Daniel Shapiro, Mark Gosselin, Anthony Wright, Kevin McVey, Jared Kofron, Daniel Martinec, Brian Fioca, Taylor Vaughn
  • Patent number: 11249456
    Abstract: A method may include generating, by a camera having a view of an interior portion of a computer-numerically-controlled machine, an image comprising a pattern. The image can be transformed into a set of machine instructions for controlling the computer-numerically-controlled machine to effect a change in a material. The change can correspond to at least a portion of the pattern. At least one machine instruction from the set of machine instructions can be executed to control the computer-numerically-controlled machine to effect at least a portion of the change. The execution can include operating, in accordance with the at least one machine instruction, a tool coupled with the computer-numerically-controlled machine. The tool can configured to effect the change on the material. Related systems and articles of manufacture, including computer program products, are also provided.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 15, 2022
    Assignee: Glowforge Inc.
    Inventors: Daniel Shapiro, Mark Gosselin, Anthony Wright, Jonathan Park, Kevin McVey, Scott Haug, Rachael Ludwick, Daniel Martinec
  • Patent number: 11137738
    Abstract: A method for calibrating a computer-numerically-controlled machine can include capturing one or more images of at least a portion of the computer-numerically-controlled machine. The one or more images can be captured with at least one camera located inside an enclosure containing a material bed. A mapping relationship can be created which maps a pixel in the one or more images to a location within the computer-numerically controlled machine. The creation of the mapping relationship can include compensating for a difference in the one or more images relative to one or more physical parameters of the computer-numerically-controlled machine and/or a material positioned on the material bed. Related systems and/or articles of manufacture, including computer program products, are also provided.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: October 5, 2021
    Assignee: Glowforge Inc.
    Inventors: Daniel Shapiro, Mark Gosselin, Anthony Wright, Kevin McVey, Jared Kofron, Daniel Martinec, Brian Fioca, Taylor Vaughn