Patents by Inventor Kevin Nealis
Kevin Nealis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250117874Abstract: One embodiment provides an apparatus comprising a memory stack including multiple memory dies and a parallel processor including a plurality of multiprocessors. Each multiprocessor has a single instruction, multiple thread (SIMT) architecture, the parallel processor coupled to the memory stack via one or more memory interfaces. At least one multiprocessor comprises a multiply-accumulate circuit to perform multiply-accumulate operations on matrix data in a stage of a neural network implementation to produce a result matrix comprising a plurality of matrix data elements at a first precision, precision tracking logic to evaluate metrics associated with the matrix data elements and indicate if an optimization is to be performed for representing data at a second stage of the neural network implementation, and a numerical transform unit to dynamically perform a numerical transform operation on the matrix data elements based on the indication to produce transformed matrix data elements at a second precision.Type: ApplicationFiled: October 7, 2024Publication date: April 10, 2025Applicant: Intel CorporationInventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
-
Publication number: 20250061534Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.Type: ApplicationFiled: August 29, 2024Publication date: February 20, 2025Applicant: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 12148063Abstract: One embodiment provides a multi-chip module accelerator usable to execute tensor data processing operations a multi-chip module. The multi-chip module may include a memory stack including multiple memory dies and parallel processor circuitry communicatively coupled to the memory stack. The parallel processor circuitry may include multiprocessor cores to execute matrix multiplication and accumulate operations. The matrix multiplication and accumulate operations may include floating-point operations that are configurable to include two-dimensional matrix multiply and accumulate operations involving inputs that have differing floating-point precisions. The floating-point operations may include a first operation at a first precision and a second operation at a second precision. The first operation may include a multiply having at least one 16-bit floating-point input and the second operation may include an accumulate having a 32-bit floating-point input.Type: GrantFiled: October 5, 2022Date of Patent: November 19, 2024Assignee: Intel CorporationInventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
-
Patent number: 12112397Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.Type: GrantFiled: June 14, 2023Date of Patent: October 8, 2024Assignee: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Publication number: 20240256825Abstract: A library of machine learning primitives is provided to optimize a machine learning model to improve the efficiency of inference operations. In one embodiment a trained convolutional neural network (CNN) model is processed into a trained CNN model via pruning, convolution window optimization, and quantization.Type: ApplicationFiled: February 7, 2024Publication date: August 1, 2024Applicant: Intel CorporationInventors: Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Barath Lakshmanan, Ben J. Ashbaugh, Jingyi Jin, Jeremy Bottleson, Mike B. Macpherson, Kevin Nealis, Dhawal Srivastava, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Altug Koker, Abhishek R. Appu
-
Patent number: 12050984Abstract: One embodiment provides for a general-purpose graphics processing unit including a scheduler to schedule multiple matrix operations for execution by a general-purpose graphics processing unit. The multiple matrix operations are determined based on a single machine learning compute instruction. The single machine learning compute instruction is a convolution instruction and the multiple matrix operations are associated with a convolution operation.Type: GrantFiled: October 28, 2020Date of Patent: July 30, 2024Assignee: Intel CorporationInventors: Rajkishore Barik, Elmoustapha Ould-Ahmed-Vall, Xiaoming Chen, Dhawal Srivastava, Anbang Yao, Kevin Nealis, Eriko Nurvitadhi, Sara S. Baghsorkhi, Balaji Vembu, Tatiana Shpeisman, Ping T. Tang
-
Patent number: 12020135Abstract: A library of machine learning primitives is provided to optimize a machine learning model to improve the efficiency of inference operations. In one embodiment a trained convolutional neural network (CNN) model is processed into a trained CNN model via pruning, convolution window optimization, and quantization.Type: GrantFiled: August 26, 2021Date of Patent: June 25, 2024Assignee: Intel CorporationInventors: Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Barath Lakshmanan, Ben J. Ashbaugh, Jingyi Jin, Jeremy Bottleson, Mike B. Macpherson, Kevin Nealis, Dhawal Srivastava, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Altug Koker, Abhishek R. Appu
-
Publication number: 20240171762Abstract: Systems, methods, and computer-program products for video encoding for autonomous vehicles are disclosed. A method for video encoding for autonomous vehicles may include receiving image data associated with a plurality of images from at least one camera of an autonomous vehicle. The image data may be encoded into a plurality of video streams including at least one first video stream and at least one second video stream. The at least one first video stream may be associated with a first quality level. The at least one second video stream may be associated with a second quality level different than the first quality level. At least one of the plurality of video streams may be communicated to at least one data storage device.Type: ApplicationFiled: November 22, 2022Publication date: May 23, 2024Inventors: Florian Netter, Jonathan Michael Bonte, Kevin Nealis
-
Patent number: 11948224Abstract: One embodiment provides an apparatus comprising a memory stack including multiple memory dies and a parallel processor including a plurality of multiprocessors. Each multiprocessor has a single instruction, multiple thread (SIMT) architecture, the parallel processor coupled to the memory stack via one or more memory interfaces. At least one multiprocessor comprises a multiply-accumulate circuit to perform multiply-accumulate operations on matrix data in a stage of a neural network implementation to produce a result matrix comprising a plurality of matrix data elements at a first precision, precision tracking logic to evaluate metrics associated with the matrix data elements and indicate if an optimization is to be performed for representing data at a second stage of the neural network implementation, and a numerical transform unit to dynamically perform a numerical transform operation on the matrix data elements based on the indication to produce transformed matrix data elements at a second precision.Type: GrantFiled: November 1, 2022Date of Patent: April 2, 2024Assignee: Intel CorporationInventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
-
Patent number: 11934934Abstract: An apparatus to facilitate optimization of a convolutional neural network (CNN) is disclosed. The apparatus includes optimization logic to receive a CNN model having a list of instructions and including pruning logic to optimize the list of instructions by eliminating branches in the list of instructions that comprise a weight value of 0.Type: GrantFiled: April 17, 2017Date of Patent: March 19, 2024Assignee: Intel CorporationInventors: Liwei Ma, Elmoustapha Ould- Ahmed-Vall, Barath Lakshmanan, Ben J. Ashbaugh, Jingyi Jin, Jeremy Bottleson, Mike B. Macpherson, Kevin Nealis, Dhawal Srivastava, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Altug Koker, Abhishek R. Appu
-
Publication number: 20230401668Abstract: One embodiment provides a general-purpose graphics processing unit comprising a dynamic precision floating-point unit including a control unit having precision tracking hardware logic to track an available number of bits of precision for computed data relative to a target precision, wherein the dynamic precision floating-point unit includes computational logic to output data at multiple precisions.Type: ApplicationFiled: August 25, 2023Publication date: December 14, 2023Applicant: Intel CorporationInventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
-
Publication number: 20230394616Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.Type: ApplicationFiled: June 14, 2023Publication date: December 7, 2023Applicant: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Publication number: 20230359461Abstract: One embodiment provides for a compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction that specifies multiple operands including a multi-bit input value and a one-bit weight associated with a neural network, as well as an arithmetic logic unit including a multiplier, an adder, and an accumulator register. To execute the decoded instruction, the multiplier is to perform a fused operation including an exclusive not OR (XNOR) operation and a population count operation. The adder is configured to add the intermediate product to a value stored in the accumulator register and update the value stored in the accumulator register.Type: ApplicationFiled: May 11, 2023Publication date: November 9, 2023Applicant: Intel CorporationInventors: Kevin Nealis, Anbang Yao, Xiaoming Chen, Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha
-
Patent number: 11797837Abstract: In an example, an apparatus comprises a plurality of execution units comprising at least a first type of execution unit and a second type of execution unit and logic, at least partially including hardware logic, to analyze a workload and assign the workload to one of the first type of execution unit or the second type of execution unit. Other embodiments are also disclosed and claimed.Type: GrantFiled: April 24, 2017Date of Patent: October 24, 2023Assignee: Intel CorporationInventors: Altug Koker, Abhishek R. Appu, Kamal Sinha, Joydeep Ray, Balaji Vembu, Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, John C. Weast, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Farshad Akhbari, Nadathur Rajagopalan Satish, Liwei Ma, Jeremy Bottleson, Eriko Nurvitadhi, Travis T. Schluessler, Ankur N. Shah, Jonathan Kennedy, Vasanth Ranganathan, Sanjeev Jahagirdar
-
Publication number: 20230334316Abstract: Described herein is a graphics processor comprising a memory device and a graphics processing cluster coupled with the memory device. The graphics processing cluster includes a plurality of graphics multiprocessors interconnected via a data interconnect. A graphics multiprocessor includes circuitry configured to load a modular neural network including a plurality of subnetworks, each of the plurality of subnetworks trained to perform a computer vision operation on a separate subject.Type: ApplicationFiled: May 9, 2023Publication date: October 19, 2023Applicant: Intel CorporationInventors: Altug Koker, Abhishek R. Appu, Kamal Sinha, Joydeep Ray, Balaji Vembu, Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, John C. Weast, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Farshad Akhbari, Nadathur Rajagopalan Satish, Liwei Ma, Jeremy Bottleson, Eriko Nurvitadhi, Travis T. Schluessler, Ankur N. Shah, Jonathan Kennedy, Vasanth Ranganathan, Sanjeev Jahagirdar
-
Patent number: 11727246Abstract: Embodiments provide systems and methods which facilitate optimization of a convolutional neural network (CNN). One embodiment provides for a non-transitory machine-readable medium storing instructions that cause one or more processors to perform operations comprising processing a trained convolutional neural network (CNN) to generate a processed CNN, the trained CNN having weights in a floating-point format. Processing the trained CNN includes quantizing the weights in the floating-point format to generate weights in an integer format. Quantizing the weights includes generating a quantization table to enable non-uniform quantization of the weights and quantizing the weights from the floating-point format to the integer format using the quantization table. The operations additionally comprise performing an inference operation utilizing the processed CNN with the integer format weights.Type: GrantFiled: February 22, 2019Date of Patent: August 15, 2023Assignee: Intel CorporationInventors: Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Barath Lakshmanan, Ben J. Ashbaugh, Jingyi Jin, Jeremy Bottleson, Mike B. Macpherson, Kevin Nealis, Dhawal Srivastava, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Altug Koker, Abhishek R. Appu
-
Patent number: 11727527Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex compute operation.Type: GrantFiled: December 3, 2021Date of Patent: August 15, 2023Assignee: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 11693658Abstract: One embodiment provides for a compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction that specifies multiple operands including a multi-bit input value and a ternary weight associated with a neural network and an arithmetic logic unit including a multiplier, an adder, and an accumulator register. To execute the decoded instruction, the multiplier is to perform a multiplication operation on the multi-bit input based on the ternary weight to generate an intermediate product and the adder is to add the intermediate product to a value stored in the accumulator register and update the value stored in the accumulator register.Type: GrantFiled: July 26, 2021Date of Patent: July 4, 2023Assignee: Intel CorporationInventors: Kevin Nealis, Anbang Yao, Xiaoming Chen, Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha
-
Publication number: 20230061331Abstract: One embodiment provides a multi-chip module accelerator usable to execute tensor data processing operations a multi-chip module. The multi-chip module may include a memory stack including multiple memory dies and parallel processor circuitry communicatively coupled to the memory stack. The parallel processor circuitry may include multiprocessor cores to execute matrix multiplication and accumulate operations. The matrix multiplication and accumulate operations may include floating-point operations that are configurable to include two-dimensional matrix multiply and accumulate operations involving inputs that have differing floating-point precisions. The floating-point operations may include a first operation at a first precision and a second operation at a second precision. The first operation may include a multiply having at least one 16-bit floating-point input and the second operation may include an accumulate having a 32-bit floating-point input.Type: ApplicationFiled: October 5, 2022Publication date: March 2, 2023Applicant: Intel CorporationInventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
-
Publication number: 20230061670Abstract: One embodiment provides an apparatus comprising a memory stack including multiple memory dies and a parallel processor including a plurality of multiprocessors. Each multiprocessor has a single instruction, multiple thread (SIMT) architecture, the parallel processor coupled to the memory stack via one or more memory interfaces. At least one multiprocessor comprises a multiply-accumulate circuit to perform multiply-accumulate operations on matrix data in a stage of a neural network implementation to produce a result matrix comprising a plurality of matrix data elements at a first precision, precision tracking logic to evaluate metrics associated with the matrix data elements and indicate if an optimization is to be performed for representing data at a second stage of the neural network implementation, and a numerical transform unit to dynamically perform a numerical transform operation on the matrix data elements based on the indication to produce transformed matrix data elements at a second precision.Type: ApplicationFiled: November 1, 2022Publication date: March 2, 2023Applicant: Intel CorporationInventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland