Patents by Inventor Kevin P. Dockery

Kevin P. Dockery has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11725116
    Abstract: A chemical mechanical polishing composition includes a liquid carrier and colloidal silica particles dispersed in the liquid carrier. The colloidal silica particles have a positive charge of at least 10 mV in the liquid carrier and may be characterized as having: (i) a number average aspect ratio of greater than about 1.25 and (ii) a normalized particle size span by weight of greater than about 0.42. The polishing composition may further optionally include an iron-containing accelerator and a tungsten etch inhibitor, for example, when the polishing composition is a tungsten CMP composition.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: August 15, 2023
    Assignee: CMC MATERIALS, INC.
    Inventors: Alexander W. Hains, Kim Long, Steven Grumbine, Roman A. Ivanov, Kevin P. Dockery, Benjamin Petro, Brian Sneed, Galyna Krylova
  • Publication number: 20230070776
    Abstract: A chemical mechanical polishing composition comprises, consists of, or consists essentially of a liquid carrier, anionic particles dispersed in the liquid carrier, an anionic polymer or surfactant, and a cationic polymer.
    Type: Application
    Filed: August 25, 2022
    Publication date: March 9, 2023
    Inventors: Yang-Yao Lee, Hsin-Yen Wu, Kevin P. Dockery, Na Zhang, Chi-Rung Shie
  • Patent number: 11492514
    Abstract: A composition comprises, consists of, or consists essentially of a polymer including a derivatized amino acid monomer unit. A chemical mechanical polishing composition includes a water based liquid carrier, abrasive particles dispersed in the liquid carrier, and a cationic polymer having a derivatized amino acid monomer unit. A method of chemical mechanical polishing includes utilizing the chemical mechanical polishing composition to remove at least a portion of a metal or dielectric layer from a substrate and thereby polish the substrate.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: November 8, 2022
    Assignee: CMC Materials, Inc.
    Inventors: Na Zhang, David Bailey, Kevin P. Dockery, Roman A. Ivanov, Deepak Shukla
  • Patent number: 11043151
    Abstract: The invention provides a chemical-mechanical polishing composition comprising (a) an abrasive selected from the group consisting of alumina, ceria, titania, zirconia, and combinations thereof, wherein the abrasive is surface-coated with a copolymer comprising a combination of sulfonic acid monomeric units and carboxylic acid monomeric units a combination of sulfonic acid monomeric units and phosphonic acid monomeric units, (b) an oxidizing agent, and (c) water, wherein the polishing composition has a pH of about 2 to about 5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate comprises tungsten or cobalt and silicon oxide.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: June 22, 2021
    Assignee: CMC Materials, Inc.
    Inventors: Ji Cui, Helin Huang, Kevin P. Dockery, Pankaj K. Singh, Hung-Tsung Huang, Chih-Hsien Chien
  • Patent number: 10676647
    Abstract: A chemical mechanical polishing composition includes a water based liquid carrier, cationic abrasive particles dispersed in the liquid carrier, a first amino acid compound having an isoelectric point of less than 7 and a second amino acid compound having an isoelectric point of greater than 7. The pH of the composition is in a range from about 1 to about 5. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: June 9, 2020
    Assignee: Cabot Microelectronics Corporation
    Inventors: Na Zhang, Kevin P. Dockery, Zhao Liu, Roman A. Ivanov
  • Patent number: 10647887
    Abstract: The invention provides a chemical-mechanical polishing composition comprising a) surface-modified colloidal silica particles, comprising a negatively-charged group on the surface of the particles, wherein the surface-modified colloidal silica particles have a negative charge, a particle size of about 90 nm to about 350 nm, and a zeta potential of about ?5 mV to about ?35 mV at a pH of about 3, b) an iron compound, c) a stabilizing agent, d) a corrosion inhibitor, and e) an aqueous carrier. The invention also provides a method suitable for polishing a substrate.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 12, 2020
    Assignee: Cabot Microelectronics Corporation
    Inventors: Kevin P. Dockery, Pankaj K. Singh, Steven Grumbine, Kim Long
  • Patent number: 10640679
    Abstract: The invention provides a chemical-mechanical polishing composition containing a ceria abrasive, a polyhydroxy aromatic carboxylic acid, an ionic polymer of formula I: wherein X1 and X2, Z1 and Z2, R1, R2, R3, and R4, and n are as defined herein, and water, wherein the polishing composition has a pH of about 1 to about 4.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: May 5, 2020
    Assignee: Cabot Microelectronics Corporation
    Inventors: Sudeep Pallikkara Kuttiatoor, Charles Hamilton, Kevin P. Dockery
  • Patent number: 10066126
    Abstract: Described are compositions (e.g., slurries) useful in methods for chemical-mechanical processing (e.g. polishing or planarizing) a surface of a substrate that contains tungsten, the slurries containing abrasive particles, metal cation catalyst, phosphorus-containing zwitterionic compound, and optional ingredients such as oxidizer; also described are methods and substrates used or processed on combination with the compositions.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: September 4, 2018
    Assignee: Cabot Microelectronics Corporation
    Inventors: Kevin P. Dockery, Helin Huang, Matthew Carnes, Glenn Whitener
  • Publication number: 20170190936
    Abstract: Described are compositions (e.g., slurries) useful in methods for chemical-mechanical processing (e.g. polishing or planarizing) a surface of a substrate that contains tungsten, the slurries containing abrasive particles, metal cation catalyst, phosphorus-containing zwitterionic compound, and optional ingredients such as oxidizer; also described are methods and substrates used or processed on combination with the compositions.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 6, 2017
    Inventors: Kevin P. Dockery, Helin Huang, Matthew Carnes, Glenn Whitener
  • Patent number: 8906252
    Abstract: The invention provides a chemical-mechanical polishing composition containing a ceria abrasive, an ionic polymer of formula I: wherein X1 and X2, Z1 and Z2, R2, R3, and R4, and n are as defined herein, and water, wherein the polishing composition has a pH of about 1 to about 4.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: December 9, 2014
    Assignee: Cabot Microelelctronics Corporation
    Inventors: Kevin P. Dockery, Renhe Jia, Jeffrey Dysard
  • Publication number: 20140346140
    Abstract: The invention provides a chemical-mechanical polishing composition containing a ceria abrasive, an ionic polymer of formula I: wherein X1 and X2, Z1 and Z2, R2, R3, and R4, and n are as defined herein, and water, wherein the polishing composition has a pH of about 1 to about 4.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Inventors: Kevin P. Dockery, Renhe Jia, Jeffrey Dysard
  • Patent number: 8485654
    Abstract: An aqueous inkjet printing fluid composition for use in an inkjet printer including a silicon-based material which contacts the aqueous printing fluid composition, having in a concentration sufficient to inhibit corrosion of the silicon-based material when contacted by the aqueous printing fluid composition a soluble metal ligand complex of Formula (I): wherein M represents a divalent or a trivalent metal, R1 and R2 each independently represent alkyl, aryl, or heteroaryl substituents, R3 represents hydrogen, a halide, or an alkyl, aryl, or heteroaryl substituent, and the number of ligands n is 2 or 3. The useful lifetime of microelectromechanical fluidic devices based on silicon fabrication is extended.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 16, 2013
    Assignee: Eastman Kodak Company
    Inventors: Allan F. Sowinski, Kevin P. Dockery
  • Patent number: 8459787
    Abstract: An aqueous inkjet printing fluid composition for use in an inkjet printer having a silicon-based material which contacts the aqueous printing fluid composition, including in a concentration sufficient to inhibit corrosion of the silicon-based material when contacted by the aqueous printing fluid composition a soluble metal ligand complex of Formula (I): wherein M represents a divalent or a trivalent metal, R1 represents a hydrogen, or an alkyl, alkenyl, or aryl substituent, X1 and X2 each independently represent either O or S, Q represents the atoms necessary to form a five, six or seven-membered heterocyclic or carbocyclic ring, and the number of ligands n is 2 or 3. The useful lifetime of microelectromechanical fluidic devices based on silicon fabrication is extended.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 11, 2013
    Assignee: Eastman Kodak Company
    Inventors: Allan F. Sowinski, Kevin P. Dockery
  • Patent number: 8419176
    Abstract: A process for printing inkjet ink and other aqueous compositions through silicon-based microelectromechanical printer structures is disclosed that suppresses the normal dissolution of the silicon device components in contact with the aqueous composition. Inkjet ink and other aqueous compositions used in the process contain the soluble salts of organic aromatic azo compounds in sufficient concentrations to inhibit silicon corrosion. The useful lifetime of microelectromechanical fluidic devices based on silicon fabrication is extended.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: April 16, 2013
    Assignee: Eastman Kodak Company
    Inventors: Kevin P. Dockery, Allan F. Sowinski, Barbara B. Lussier, Mihaela L. Madaras, Kurt D. Sieber, Hwei-Ling Yau
  • Publication number: 20120105553
    Abstract: An aqueous inkjet printing fluid composition for use in an inkjet printer comprising a silicon-based material which contacts the aqueous printing fluid composition, comprising in a concentration sufficient to inhibit corrosion of the silicon-based material when contacted by the aqueous printing fluid composition a soluble metal ligand complex of Formula (I): wherein M represents a divalent or a trivalent metal, R1 represents a hydrogen, or an alkyl, alkenyl, or aryl substituent, X1 and X2 each independently represent either O or S, Q represents the atoms necessary to form a five, six or seven-membered heterocyclic or carbocyclic ring, and the number of ligands n is 2 or 3. The useful lifetime of microelectromechanical fluidic devices based on silicon fabrication is extended.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Allan F. Sowinski, Kevin P. Dockery
  • Publication number: 20120105535
    Abstract: An aqueous inkjet printing fluid composition for use in an inkjet printer comprising a silicon-based material which contacts the aqueous printing fluid composition, comprising in a concentration sufficient to inhibit corrosion of the silicon-based material when contacted by the aqueous printing fluid composition a soluble metal ligand complex of Formula (I): wherein M represents a divalent or a trivalent metal, R1 and R2 each independently represent alkyl, aryl, or heteroaryl substituents, R3 represents hydrogen, a halide, or an alkyl, aryl, or heteroaryl substituent, and the number of ligands n is 2 or 3. The useful lifetime of microelectromechanical fluidic devices based on silicon fabrication is extended.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Allan F. Sowinski, Kevin P. Dockery
  • Publication number: 20100302292
    Abstract: A process for printing inkjet ink and other aqueous compositions through silicon-based microelectromechanical printer structures is disclosed that suppresses the normal dissolution of the silicon device components in contact with the aqueous composition. Inkjet ink and other aqueous compositions used in the process contain the soluble salts of organic aromatic azo compounds in sufficient concentrations to inhibit silicon corrosion. The useful lifetime of microelectromechanical fluidic devices based on silicon fabrication is extended.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Inventors: Kevin P. Dockery, Allan F. Sowinski, Barbara B. Lussier, Mihaela L. Madaras, Kurt D. Sieber, Hwei-Ling Yau
  • Publication number: 20090065478
    Abstract: Measuring thickness and the rate of change of thickness of a material having a surface while the material is being etched, comprising: illuminating the material with low coherence light, a portion of the which transmits through the material and a portion of which is reflected; etching the material surface and while etching, collecting a portion of the reflected light from each optical interface of the material with a low coherence light interferometer; calculating the thickness and rate of change of thickness of the material or part of the material according to the obtained interferometric data; and storing or displaying the resultant thickness and rate of change of thickness of the material. The present invention provides a unique way of calculating the thermo optic coefficient of a material. This method can be used simultaneously with etching the material so that changes to the etching rate can be made in real time.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 12, 2009
    Inventors: Kevin P. Dockery, Michael A. Marcus, Kurt D. Sieber
  • Patent number: 7368624
    Abstract: A process for forming an aryl-aryl bond comprises the step of reacting an arene hydrocarbon compound with either (1) an organic oxidant selected from the group consisting of a quinone, a quinone imine, a quinone diimine, and a nitroarene, or (2) an oxidizing salt selected from the group consisting of a triarylaminium salt, an oxonium salt, and a nitrosium salt, or (3) a hypervalent iodine compound, each in the presence of a Brönsted or Lewis acid.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: May 6, 2008
    Assignee: Eastman Kodak Company
    Inventors: Christopher T. Brown, Deepak Shukla, Kevin P. Dockery, Jerome R. Lenhard, James R. Matz
  • Patent number: 7153896
    Abstract: An element for the attachment of protein arrays, the element comprising a surface to which are attached a plurality of piperazine functional groups wherein the piperazine functional groups are represented by Formula I: where R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, are hydrogen, alkyl, alkenyl, alkynyl, alkylhalo, cycloalkyl, cycloalkenyl, alkylthio, alkoxy, with the proviso that at least one of R1 to R10 be a non-labile chemical unit that attaches the piperazine functional group to the surface of the element.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: December 26, 2006
    Assignee: Eastman Kodak Company
    Inventors: Kevin P. Dockery, David M. Teegarden, Tiecheng A. Qiao, Brian J. Antalek, Susan Power