Patents by Inventor Kevin P. O'Brien
Kevin P. O'Brien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240355768Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.Type: ApplicationFiled: July 2, 2024Publication date: October 24, 2024Applicant: Intel CorporationInventors: Adel A. Elsherbini, Krishna Bharath, Kevin P. O'Brien, Kimin Jun, Han Wui Then, Mohammad Enamul Kabir, Gerald S. Pasdast, Feras Eid, Aleksandar Aleksov, Johanna M. Swan, Shawna M. Liff
-
Publication number: 20240355934Abstract: Described herein are transistors with monolayer transition metal dichalcogenides (TMD) semiconductor material. TMD materials include combination of a transition metal (e.g., molybdenum or tungsten) and a chalcogen (e.g., sulfur or selenium) in a monolayer having a hexagonal crystal structure. A transistor has a single layer of TMD forming a channel region, and multiple layers of the TMD material at the source and drain regions. Upper portions of the multilayer TMD source and drain regions are doped, and conductive contacts are formed over the doped portions.Type: ApplicationFiled: April 21, 2023Publication date: October 24, 2024Applicant: Intel CorporationInventors: Mahmut Sami Kavrik, Tristan A. Tronic, Jennifer Lux, Uygar E. Avci, Kevin P. O'Brien
-
Patent number: 12107060Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.Type: GrantFiled: September 18, 2020Date of Patent: October 1, 2024Assignee: Intel CorproationInventors: Adel A. Elsherbini, Zhiguo Qian, Gerald S. Pasdast, Mohammad Enamul Kabir, Han Wui Then, Kimin Jun, Kevin P. O'Brien, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov, Feras Eid
-
Patent number: 12062631Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.Type: GrantFiled: September 18, 2020Date of Patent: August 13, 2024Assignee: Intel CorporationInventors: Adel A Elsherbini, Krishna Bharath, Kevin P. O'Brien, Kimin Jun, Han Wui Then, Mohammad Enamul Kabir, Gerald S. Pasdast, Feras Eid, Aleksandar Aleksov, Johanna M. Swan, Shawna M. Liff
-
Publication number: 20240222484Abstract: Transistors and integrated circuitry including a 2D channel material layer within a stack of material layers further including one or more insulator (e.g., dielectric) materials above and/or below the 2D channel material layer. These supporting insulator layers may be non-sacrificial while other material layers within a starting material stack may be sacrificial, replaced, for example, with gate insulator and/or gate material. In some exemplary embodiments, the 2D channel material is a metal chalcogenide and the supporting insulator layer is advantageously a dielectric material composition having a low dielectric constant.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Chia-Ching Lin, Kevin P. O'Brien, Ashish Verma Penumatcha, Chelsey Dorow, Kirby Maxey, Carl H. Naylor, Tao Chu, Guowei Xu, Uygar Avci, Feng Zhang, Ting-Hsiang Hung, Ande Kitamura, Mahmut Sami Kavrik
-
Publication number: 20240222482Abstract: Devices, transistor structures, systems, and techniques are described herein related to field effect transistors having a doping layer on metal chalcogenide nanoribbons outside of the channel region. The doping layer is a metal oxide that shifts the electrical characteristics of the nanoribbons and is formed by depositing a metal and oxidizing the metal by exposure to ozone and ultraviolet light.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Kevin P. O'Brien, Rachel Steinhardt, Chelsey Dorow, Carl H. Naylor, Kirby Maxey, Sudarat Lee, Ashish Verma Penumatcha, Uygar Avci, Scott Clendenning, Tristan Tronic, Mahmut Sami Kavrik, Ande Kitamura
-
Publication number: 20240222506Abstract: An apparatus, comprising a field effect transistor comprising a ferroelectric material, a channel material comprising a transition metal and a chalcogen, a source and a drain coupled to the channel material, the source and drain comprising a conductive material.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Hojoon Ryu, Punyashloka Debashis, Rachel A. Steinhardt, Kevin P. O'Brien, John J. Plombon, Dmitri Evgenievich Nikonov, Ian Alexander Young
-
Publication number: 20240186416Abstract: Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.Type: ApplicationFiled: January 16, 2024Publication date: June 6, 2024Inventors: Kevin P. O'Brien, Carl NAYLOR, Chelsey DOROW, Kirby MAXEY, Tanay GOSAVI, Ashish Verma PENUMATCHA, Shriram SHIVARAMAN, Chia-Ching LIN, Sudarat LEE, Uygar E. AVCI
-
Publication number: 20240120415Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be etched away, leaving the doped semiconductor layers as fins for a ribbon FET. A ferroelectric layer can be conformally grown on the fins, creating a high-quality ferroelectric layer above and below the fins. A gate can then be grown on the ferroelectric layer.Type: ApplicationFiled: October 1, 2022Publication date: April 11, 2024Applicant: Intel CorporationInventors: Scott B. Clendenning, Sudarat Lee, Kevin P. O'Brien, Rachel A. Steinhardt, John J. Plombon, Arnab Sen Gupta, Charles C. Mokhtarzadeh, Gauri Auluck, Tristan A. Tronic, Brandon Holybee, Matthew V. Metz, Dmitri Evgenievich Nikonov, Ian Alexander Young
-
Publication number: 20240113220Abstract: Technologies for a transistor with a thin-film ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a thin layer of scandium aluminum nitride (ScxAl1-xN) ferroelectric gate dielectric. The channel of the transistor may be, e.g., gallium nitride or molybdenum disulfide. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one-transistor memory cell.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Applicant: Intel CorporationInventors: Arnab Sen Gupta, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Uygar E. Avci, Kevin P. O'Brien, Scott B. Clendenning, Jason C. Retasket, Shriram Shivaraman, Dominique A. Adams, Carly Rogan, Punyashloka Debashis, Brandon Holybee, Rachel A. Steinhardt, Sudarat Lee
-
Publication number: 20240113212Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.Type: ApplicationFiled: September 29, 2022Publication date: April 4, 2024Applicant: Intel CorporationInventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
-
Publication number: 20240105822Abstract: A transistor device may include a first perovskite gate material, a first perovskite ferroelectric material on the first gate material, a first perovskite semiconductor material on the first ferroelectric material, a second perovskite ferroelectric material on the first semiconductor material, a second perovskite gate material on the second ferroelectric material, a third perovskite ferroelectric material on the second gate material, a second perovskite semiconductor material on the third ferroelectric material, a fourth perovskite ferroelectric material on the second semiconductor material, a third perovskite gate material on the fourth ferroelectric material, a first source/drain metal adjacent a first side of each of the first semiconductor material and the second semiconductor material, a second source/drain metal adjacent a second side opposite the first side of each of the first semiconductor material and the second semiconductor material, and dielectric materials between the source/drain metals and theType: ApplicationFiled: September 27, 2022Publication date: March 28, 2024Applicant: Intel CorporationInventors: Kevin P. O'Brien, Brandon Holybee, Carly Rogan, Dmitri Evgenievich Nikonov, Punyashloka Debashis, Rachel A. Steinhardt, Tristan A. Tronic, Ian Alexander Young, Marko Radosavljevic, John J. Plombon
-
Publication number: 20240105810Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.Type: ApplicationFiled: September 23, 2022Publication date: March 28, 2024Applicant: Intel CorporationInventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
-
Publication number: 20240097031Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.Type: ApplicationFiled: September 16, 2022Publication date: March 21, 2024Applicant: Intel CorporationInventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
-
Patent number: 11935956Abstract: Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.Type: GrantFiled: June 26, 2020Date of Patent: March 19, 2024Assignee: Intel CorporationInventors: Kevin P. O'Brien, Carl Naylor, Chelsey Dorow, Kirby Maxey, Tanay Gosavi, Ashish Verma Penumatcha, Shriram Shivaraman, Chia-Ching Lin, Sudarat Lee, Uygar E. Avci
-
Patent number: 11908950Abstract: Embodiments include two-dimensional (2D) semiconductor sheet transistors and methods of forming such devices. In an embodiment, a semiconductor device comprises a stack of 2D semiconductor sheets, where individual ones of the 2D semiconductor sheets have a first end and a second end opposite from the first end. In an embodiment, a first spacer is over the first end of the 2D semiconductor sheets, and a second spacer is over the second end of the 2D semiconductor sheets. Embodiments further comprise a gate electrode between the first spacer and the second spacer, a source contact adjacent to the first end of the 2D semiconductor sheets, and a drain contact adjacent to the second end of the 2D semiconductor sheets.Type: GrantFiled: June 15, 2020Date of Patent: February 20, 2024Assignee: Intel CorporationInventors: Kirby Maxey, Chelsey Dorow, Kevin P. O'Brien, Carl Naylor, Ashish Verma Penumatcha, Tanay Gosavi, Uygar E. Avci, Shriram Shivaraman
-
Publication number: 20240006481Abstract: Embodiments disclosed herein include transistors and methods of forming transistors. In an embodiment, the transistor comprises a source region, a drain region, a first semiconductor channel between the source region and the drain region, and a second semiconductor channel between the source region and the drain region over the first semiconductor channel. In an embodiment, an insulator is around the source region, the drain region, the first semiconductor channel, and the second semiconductor channel. In an embodiment, a first access hole is in the insulator adjacent to a first edge of the first semiconductor channel, and a second access hole is in the insulator adjacent to a second edge of the first semiconductor channel.Type: ApplicationFiled: June 29, 2022Publication date: January 4, 2024Inventors: Chelsey DOROW, Kevin P. O'BRIEN, Sudarat LEE, Ande KITAMURA, Ashish Verma PENUMATCHA, Carl H. NAYLOR, Kirby MAXEY, Chia-Ching LIN, Scott B. CLENDENNING, Uygar E. AVCI
-
Publication number: 20240006521Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and/or techniques directed to creating back end of line 2D transistors that may be used as access transistors for a memory cell. In embodiments, a combination wet etch and dry etch process may be used to form the 2D transistors. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Chia-Ching LIN, Shriram SHIVARAMAN, Kevin P. O'BRIEN, Ashish Verma PENUMATCHA, Chelsey DOROW, Kirby MAXEY, Carl H. NAYLOR, Sudarat LEE, Uygar E. AVCI
-
Publication number: 20240006484Abstract: Embodiments disclosed herein include transistors and methods of forming transistors. In an embodiment, the transistor comprises a channel with a first end and a second end opposite from the first end, a first spacer around the first end of the channel, a second spacer around the second end of the channel, and a gate stack over the channel, where the gate stack is between the first spacer and the second spacer. In an embodiment, the transistor may further comprise a first extension contacting the first end of the channel; and a second extension contacting the first end of the channel. In an embodiment, the transistor further comprises conductive layers over the first extension and the second extension outside of the first spacer and the second spacer.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Ashish Verma PENUMATCHA, Kevin P. O'BRIEN, Kirby MAXEY, Carl H. NAYLOR, Chelsey DOROW, Uygar E. AVCI, Matthew V. METZ, Sudarat LEE, Chia-Ching LIN, Sean T. MA
-
Publication number: 20240008290Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and/or techniques directed to creating back end of line 2D transistors that include a metal-ferroelectric-metal-insulator-semiconductor structure used as a memory cell. In embodiments, a combination wet etch and dry etch process may be used to form the 2D transistors. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Chia-Ching LIN, Shriram SHIVARAMAN, Kevin P. O'BRIEN, Ashish Verma PENUMATCHA, Chelsey DOROW, Kirby MAXEY, Carl H. NAYLOR, Sudarat LEE, Uygar E. AVCI, Sou-Chi CHANG