Patents by Inventor Kevin P. Shambrook

Kevin P. Shambrook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040246650
    Abstract: Methods of activating, enriching, manipulating, and producing macromolecular materials comprising highly conductive multielectron threads are provided together with superior such materials and devices comprising them. Activation methods such as doping the material with charged or uncharged dopants, using electrolysis techniques, and charging the material may be combined with various enrichment techniques that take advantage of reduced viscosity levels such as filtering and fractionation to obtain very high yields when producing conductive films, wires, and diamagnetic materials. Also disclosed are methods for electrically joining conductors and various devices comprising highly conductive macromolecular materials.
    Type: Application
    Filed: October 14, 2003
    Publication date: December 9, 2004
    Inventors: Leonid N. Grigorov, A. Ze'ev Hed, Dmitry N. Rogachev, Kevin P. Shambrook, Alan W. Tamarelli
  • Patent number: 6804105
    Abstract: A polymer material comprising channels whose temperature-independent conductivity exceeds 106 S/cm is used to form conductive films. Conduction takes place through threads and channels passing through the film which is otherwise a dielectric. The film is produced by first depositing a macromolecular polymer substance on a substrate. During preparation, the substance is preferably in a viscous liquid state. Stable free electrons (polarons) are then created by ionizing the substance. This is assisted by exposure to UV radiation and the presence of strong polar groups in the polymer. Various enrichment techniques, such as applying a strong electric field, are then used to join the superpolarons together into conductive threads within the medium. To stabilize the positions of the threads, the medium then may be solidified, preferably by cooling it below its glass transition point or inducing cross-linking between the macromolecules. The film may be a membrane.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: October 12, 2004
    Assignee: Room Temperature Superconductors, Inc.
    Inventors: Leonid N. Grigorov, Kevin P. Shambrook
  • Publication number: 20030156375
    Abstract: A polymer material comprising channels whose temperature-independent conductivity exceeds 106 S/cm is used to form conductive films. Conduction takes place through threads and channels passing through the film which is otherwise a dielectric. The film is produced by first depositing a macromolecular polymer substance on a substrate. During preparation, the substance is preferably in a viscous liquid state. Stable free electrons (polarons) are then created by ionizing the substance. This is assisted by exposure to UV radiation and the presence of strong polar groups in the polymer. Various enrichment techniques, such as applying a strong electric field, are then used to join the superpolarons together into conductive threads within the medium. To stabilize the positions of the threads, the medium then may be solidified, preferably by cooling it below its glass transition point or inducing cross-linking between the macromolecules. The film may be a membrane.
    Type: Application
    Filed: February 18, 2003
    Publication date: August 21, 2003
    Inventors: Leonid N. Grigorov, Kevin P. Shambrook
  • Patent number: 6552883
    Abstract: A polymer material comprising channels whose temperature-independent conductivity exceeds 106 S/cm is used to form conductive films and various devices containing such films. Conduction takes place through threads and channels passing through the film which is otherwise a dielectric. The film is produced by first depositing a macromolecular polymer substance on a substrate. During preparation, the substance is preferably in a viscous liquid state. Stable free electrons (polarons) are then created by ionizing the substance. This is assisted by exposure to UV radiation and the presence of strong polar groups in the polymer. Various enrichment techniques, such as applying a strong electric field, are then used to join the superpolarons together into conducting threads within the medium. To stabilize the positions of the threads, the medium is then solidified, preferably by cooling it below its glass transition point or inducing cross-linking between the macromolecules. The film may be a membrane.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: April 22, 2003
    Assignee: Room Temperature Superconductors, Inc.
    Inventors: Leonid N. Grigorov, Kevin P. Shambrook
  • Patent number: 5777292
    Abstract: A method is disclosed for producing a polymer material whose room temperature conductivity exceeds 10.sup.6 S/cm. In a preferred embodiment the material is produced in the form of a film having thickness less than 100 .mu.m. Conduction takes place through threads passing through the film which is otherwise a dielectric. The film is produced by first depositing a macromolecular polymer substance on a substrate. During preparation, the substance must be in a viscose liquid state. Stable free electrons (polarons) are then created by ionizing the substance. This is assisted by exposure to UV radiation and the presence of strong polar groups in the polymer. Various techniques, such as applying a strong electric field, are then used to join the polarons together into conducting threads within the medium. To stabilize the conductivity, the medium is then solidified by cooling it below its glassing point or inducing cross-linking between the macromolecules.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: July 7, 1998
    Assignee: Room Temperature Superconductors Inc.
    Inventors: Leonid N. Grigorov, Kevin P. Shambrook
  • Patent number: 5151388
    Abstract: Interconnection of densely populated multiple chip integrated hybrid circuits (12) in a manner such that heat can be efficiently extracted therefrom. An integrated circuit die (31) is attached to a flip chip interconnect layer by soldering the connection pads thereto. The interconnect layer is slid off its substrate (11) in the manner of a decal. After the circuit has been tested and found acceptable, the other side of the die (31) is permanently bonded to a thermal conduction plate or heat sink (32). The decal interconnect (33) is made of alternating layers of an insulator (41) and a conductor (42) built on top of an erodible sacrifical layer (48) applied to a substrate. The sacrificial layer (48) is dissolved by a suitable solvent to float the multilayer interconnect off the substrate (11).
    Type: Grant
    Filed: May 7, 1991
    Date of Patent: September 29, 1992
    Assignee: Hughes Aircraft Company
    Inventors: Gabriel G. Bakhit, Kevin P. Shambrook