Patents by Inventor Kevin Patrick McNelis

Kevin Patrick McNelis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970418
    Abstract: Methods for producing glass articles from glass tube includes securing a glass tube in a holder of a converter; rotating the glass tube; and passing the glass tube through processing stations, which include at least a heating station and a forming station, to form one or more features at a working end of the glass tube. An active time is an amount of time the glass tube is engaged with a heating element or a forming tool while in a processing station, and an exposure index for the processing station is the rotational speed of the glass tube multiplied by a number of heating elements or forming tools in the processing station multiplied by the active time. An absolute difference between the exposure index and a nearest integer is less than or equal to 0.30, which reduces temperature and dimensional inhomogeneity around a circumference of the glass tube.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 30, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Olivier Fournel, Kevin Patrick McNelis
  • Patent number: 11963929
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: April 23, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Christy Lynn Chapman, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Robert Anthony Schaut, Adam Robert Sarafian
  • Patent number: 11963928
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: April 23, 2024
    Assignee: CORNING INCORPORATED
    Inventors: James Ernest Webb, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, Steven Edward DeMartino, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
  • Publication number: 20230301873
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Application
    Filed: May 2, 2023
    Publication date: September 28, 2023
    Inventors: Joseph Michael Matusick, Sinue Gomez-Mower, Weirong Jiang, Steven Edward DeMar, Christie Leigh McCarthy, Connor Thomas O’Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
  • Publication number: 20230301872
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Application
    Filed: May 2, 2023
    Publication date: September 28, 2023
    Inventors: James Ernest Webb, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O’Malley, John Stephen Peanasky, Shivani Rao Polasani, Steven Edward DeMartino, Michael Clement Ruotolo, JR., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, JR., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
  • Publication number: 20230270627
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 31, 2023
    Inventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Christy Lynn Chapman, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, JR., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, JR., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Rob Anthony Schaut, Adam Robert Sarafian
  • Publication number: 20230270626
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 31, 2023
    Inventors: Christy Lynn Chapman, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Rob Anthony Schaut, Adam Robert Sarafian
  • Publication number: 20230233408
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Application
    Filed: March 29, 2023
    Publication date: July 27, 2023
    Applicant: CORNING INCORPORATED
    Inventors: Christie Leigh McCarthy, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Steven Edward DeMartino, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, JR., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut
  • Publication number: 20230105652
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 6, 2023
    Inventors: Steven Edward DeMartino, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, JR., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, JR., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Rob Anthony Schaut, Adam Robert Sarafian
  • Publication number: 20220388889
    Abstract: Methods for providing feedback control of converters for converting glass tubes to glass articles include a model predictive control framework. The methods include operating the converter, providing target values for attributes of the glass articles or glass tubes, measuring the attributes for the glass articles and glass tubes, conditioning the measurement data to remove outlier data points and calculating statistics representative of the measured attributes, and determine updated settings for one or more process parameters from the previous settings, the statistical properties, and the target values, where the updated settings are those that minimize an objective control function for the converter. The methods further include adjusting the process parameters to the updated settings. The model predictive control framework enables feedback control of the converter that compensates for disturbances that act on the process.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 8, 2022
    Inventors: Christelle Ruby Barnard, Eric Michael Gross, Joseph Michael Matusick, Kevin Patrick McNelis, Connor Thomas O'Malley
  • Publication number: 20220371936
    Abstract: Methods for controlling a converter for converting glass tubes to glass articles include preparing condition sets including settings for a plurality of process parameters, operating the converter to produce glass articles, measuring attributes of the glass articles, operating the converter at each of the condition sets, associating each glass article with a condition set used to produce the glass article and the attributes measured, developing operational models from the attributes measured and the condition sets, determining run settings for each of the plurality of process parameters based on the operational models, and operating the converter with each of the process parameters set to the run settings determined from the operational models.
    Type: Application
    Filed: May 17, 2022
    Publication date: November 24, 2022
    Inventors: Christelle Ruby Barnard, Joseph Michael Matusick, Kevin Patrick McNelis, Connor Thomas O'Malley
  • Publication number: 20220048805
    Abstract: Methods for producing glass articles from glass tube includes securing a glass tube in a holder of a converter; rotating the glass tube; and passing the glass tube through processing stations, which include at least a heating station and a forming station, to form one or more features at a working end of the glass tube. An active time is an amount of time the glass tube is engaged with a heating element or a forming tool while in a processing station, and an exposure index for the processing station is the rotational speed of the glass tube multiplied by a number of heating elements or forming tools in the processing station multiplied by the active time. An absolute difference between the exposure index and a nearest integer is less than or equal to 0.30, which reduces temperature and dimensional inhomogeneity around a circumference of the glass tube.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 17, 2022
    Inventors: Olivier Fournel, Kevin Patrick McNelis
  • Publication number: 20220048804
    Abstract: Methods for producing articles from a glass tube include securing a working end of the glass tube in a glass tube holder of a converter having a plurality of processing stations including a heating station and a forming station. An initial length of the glass tube includes a plurality of serial segments, each of the plurality of serial segments corresponding to one article and having an article number. The methods include heating the working end of the glass tube in the heating station, adjusting an amount of heating of the glass tube in the heating station based on the article number at the working end of the glass tube, and forming a feature of the article in the forming station. Adjusting the amount of heating based on the article number reduces variation in tube temperature, article dimensions, or both, from one article number to the next article number.
    Type: Application
    Filed: August 12, 2021
    Publication date: February 17, 2022
    Inventors: Christelle Ruby Barnard, Joseph Michael Matusick, Kevin Patrick McNelis, Connor Thomas O'Malley
  • Patent number: 11136255
    Abstract: Embodiments disclosed herein include systems and methods for controlling material warp that include placing the shaped mold in a heating device, forming a glass material into a shaped mold, and cooling the glass material and the shaped mold to a predetermined viscosity of the glass material. Some embodiments include, a predetermined time prior to removing the glass material and the shaped mold from the heating device, holding the glass at the mold in the heating device where the heating device temperature is substantially equal to mold and glass temperature just prior to exiting to ambient temperature. Some embodiments include removing the glass material and the shaped mold from the heating device to further cool the glass material and the shaped mold at ambient temperature, where after removing the glass material and the shaped mold from the heating device, the glass material will exhibit controlled or desired material warp.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: October 5, 2021
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Kevin Patrick McNelis, Rohit Rai, John Richard Ridge, Ljerka Ukrainczyk
  • Publication number: 20160368807
    Abstract: Embodiments disclosed herein include systems and methods for controlling material warp that include placing the shaped mold in a heating device, forming a glass material into a shaped mold, and cooling the glass material and the shaped mold to a predetermined viscosity of the glass material. Some embodiments include, a predetermined time prior to removing the glass material and the shaped mold from the heating device, holding the glass at the mold in the heating device where the heating device temperature is substantially equal to mold and glass temperature just prior to exiting to ambient temperature. Some embodiments include removing the glass material and the shaped mold from the heating device to further cool the glass material and the shaped mold at ambient temperature, where after removing the glass material and the shaped mold from the heating device, the glass material will exhibit controlled or desired material warp.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 22, 2016
    Inventors: Antoine Gaston Denis Bisson, Kevin Patrick McNelis, Rohit Rai, John Richard Ridge, Ljerka Ukrainczyk