Patents by Inventor Kevin R. Tsai
Kevin R. Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11286032Abstract: A flap support fairing system incorporates a fairing attached to a flap and deployed downward with the flap during flap extension. The fairing has an inboard butterfly portion mounted with an inboard hinge and an outboard butterfly portion mounted with in outboard hinge. A fairing deployment mechanism is responsive to flap extension and is configured to rotate the inboard butterfly portion laterally inboard about the inboard hinge relative to an airflow direction and to rotate the outboard butterfly portion laterally outboard about the outboard hinge relative to the airflow direction. Upon flap extension, rotation of the inboard and outboard butterfly portions reduces impingement of a core engine plume on the deployed fairing.Type: GrantFiled: August 30, 2019Date of Patent: March 29, 2022Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Gregory M. Santini
-
Patent number: 11260958Abstract: A flap actuation mechanism incorporates a flap bracket attached to a flap and coupled to an underwing structure with a pivotal coupling. A crankshaft is configured for over center rotation and has aligned inboard and outboard crank arms extending from axially spaced inboard and outboard journals disposed in the underwing structure and configured to rotate about a rotation axis of the inboard and outboard journals. A crank pin is connected between the inboard and outboard crank arms. An actuating rod has a first end rotatably coupled to the crank pin and a second end coupled to the flap bracket. Rotation of the crankshaft displaces the actuating rod to cause rotation of the flap bracket and the flap.Type: GrantFiled: September 4, 2019Date of Patent: March 1, 2022Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Bryan J. Gruner
-
Patent number: 11225319Abstract: A wing stall compensation mechanism employs an upper door having forward upper hinge end pivotally coupled to an upper wing structure for rotation about an upper axis and a free aft upper end. A lower door has a free aft lower end and a forward lower hinge end pivotally coupled to a lower wing structure for rotation about a lower axis and a 2-bar coupler linkage is disposed between and pivotally coupled to the upper door and lower door. Downward rotation of the upper door in response to wing surface airflow separation causes contraction of the coupler linkage inducing upward rotation of the lower door from a closed position that inhibits airflow through a flap slot to an open position that enables airflow through the flap slot, to thereby restore wing surface airflow effectiveness.Type: GrantFiled: February 26, 2020Date of Patent: January 18, 2022Assignee: The Boeing CompanyInventors: Miranda Peterson, Kevin R. Tsai
-
Publication number: 20210403144Abstract: A flap support mechanism includes a carrier beam on which a flap is mounted. The carrier beam is rotatably mounted to a flap support for rotation relative to a wing. A crankshaft assembly is rotatable about an axis and has a crankshaft eccentrically extending between an inboard cylindrical support and an outboard cylindrical support. A coupler link is rotatably engaged to the crankshaft and pivotally connected to the carrier beam. Rotation of the crankshaft from a first eccentric position to a second eccentric position translates the coupler link between a retracted position and a deployed position.Type: ApplicationFiled: May 10, 2021Publication date: December 30, 2021Inventors: Kevin R. Tsai, Michael Chih-Huan Wang
-
Patent number: 11208195Abstract: A system to arrest flap over-travel employs a track extending from a flap and engaging an auxiliary support. The track has a deployment profile determining flap motion relative to the support structure during travel between an extended position and a normal retracted position. The deployment profile has a transition portion extending beyond the normal retracted position and terminating in a detent. A resiliently mounted catcher is configured to be displaced by the transition portion during over-travel of the flap beyond the normal retracted position and captured in the detent in a maximum retracted position thereby restraining the flap.Type: GrantFiled: March 15, 2019Date of Patent: December 28, 2021Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Bryan J. Gruner
-
Publication number: 20210387716Abstract: A flap support mechanism includes a carrier beam on which a flap is mounted. The carrier beam is rotatably mounted at a fixed rotational axis and has a pair of flanges, each flange having an aperture, and a channel extending aft from the pair of flanges. A fuse pin is received through the aperture in each flange. A coupler link is attached to an actuator at a first end and pivotally engaged to the carrier beam by the fuse pin. Extension of the coupler link by the actuator rotates the carrier beam from a stowed position to a deployed position. Responsive to a moment induced on the flap and carrier beam by a ground contact load, the fuse pin is frangible to shear releasing the coupler link to translate into the channel.Type: ApplicationFiled: June 12, 2020Publication date: December 16, 2021Inventor: Kevin R. Tsai
-
Patent number: 11192628Abstract: An articulating flap support housing includes a flap connected to a wing with the flap having a range of deployed positions. An aft fairing is connected to the flap and configured to rotate with the flap through the range of deployed positions. A forward fairing is rotatably connected to the aft fairing. The forward fairing acts as a counterbalance to the aft fairing and flap.Type: GrantFiled: June 30, 2019Date of Patent: December 7, 2021Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Miranda Peterson
-
Patent number: 11161594Abstract: A flap support mounting assembly employs a flap support having at least one laterally-oriented upper coupling and a pair of laterally-oriented lower couplings. A fail-safe pin engages the at least one laterally-oriented upper coupling to an upper rear-spar fitting. A pair of frangible pins engages the lower couplings to a pair of lower rear-spar fittings. The frangible pins are configured to shear and enable the flap support to rotate upwards about the fail-safe pin in response to a load induced on the flap support that creates a moment inducing a sufficient shear force to shear the frangible pins. The fail-safe pin is configured to shear allowing separation of the flap support and associated flap from the wing in a manner that inhibits damage to a rear spar and integral fuel tank in a wing structure.Type: GrantFiled: September 25, 2019Date of Patent: November 2, 2021Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Kunal Thakar
-
Patent number: 11161595Abstract: A trailing edge flap mechanism for an aircraft incorporates a flap actuator 28 and a fore flap link 30 that pivots by actuation of the flap actuator. The fore flap link has a hinged end 32 pivotally coupled to a fore flap structure 34 and a clevis end 36 pivotally coupled to a fixed wing structure 18 at a first hinge axle 38. A rocking lever 40 is pivotally coupled to a second hinge axle 42 on the fixed wing structure. A connector bar 44 has a first end 46 pivotally coupled to the fore flap link at a first connection axle 48 and a second end 50 pivotally coupled to the rocking lever at a second connection axle 52.Type: GrantFiled: October 27, 2018Date of Patent: November 2, 2021Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Kyle A. Johnson
-
Patent number: 11142299Abstract: An aircraft wing has a flap arrangement with an inboard flap configured to move in a chordwise extension direction relative to the wing, the inboard flap having an outboard side, and an outboard flap adjacent to the inboard flap and configured to move in the chordwise extension direction relative to the wing, the outboard flap including an inboard side. A flap interconnect between the inboard flap and outboard flap has a roller mounted to a pin extending from the outboard side of the inboard flap and a guide track extending from the inboard side of the outboard flap. The guide track engages the roller on the inboard flap to limit deflection of the outboard flap relative to the inboard flap during movement of the inboard flap in the chordwise extension direction and movement of the outboard flap in the chordwise extension direction, to provide relative alignment of the inboard flap and outboard flap.Type: GrantFiled: May 31, 2019Date of Patent: October 12, 2021Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Kyle A. Johnson
-
Publication number: 20210261238Abstract: A wing stall compensation mechanism employs an upper door having forward upper hinge end pivotally coupled to an upper wing structure for rotation about an upper axis and a free aft upper end. A lower door has a free aft lower end and a forward lower hinge end pivotally coupled to a lower wing structure for rotation about a lower axis and a 2-bar coupler linkage is disposed between and pivotally coupled to the upper door and lower door. Downward rotation of the upper door in response to wing surface airflow separation causes contraction of the coupler linkage inducing upward rotation of the lower door from a closed position that inhibits airflow through a flap slot to an open position that enables airflow through the flap slot, to thereby restore wing surface airflow effectiveness.Type: ApplicationFiled: February 26, 2020Publication date: August 26, 2021Inventors: Miranda Peterson, Kevin R. Tsai
-
Patent number: 11091248Abstract: An actuator mechanism for a flap includes a first link having a rotary-driven end and a free end, and a second link having a forward end, a mid-portion, and an aft end. The rotary-driven end is pivotally connected to a base structure, the forward end is pivotally connected to the free end, and the aft end is connected to the flap. The actuator mechanism also includes a third link that includes a fixed end, an intermediate connector, and an end connector. The fixed end is pivotally connected to the base structure, and the intermediate connector is pivotally connected to the mid-portion of the second link. The actuator mechanism further includes a flap link including a first end pivotally connected to the end connector, and a second end pivotally connected to the flap. Rotation of the first link causes the flap to transition from a stowed to a fully deployed position.Type: GrantFiled: September 17, 2019Date of Patent: August 17, 2021Assignee: THE BOEING COMPANYInventor: Kevin R. Tsai
-
Patent number: 11066152Abstract: The present disclosure provides a slotted entry gimbal including an inner ring with a first side and a second side. The inner ring includes a first pin extending from the first side of the inner ring and a second pin extending from the second side of the inner ring. The slotted entry gimbal also includes an outer ring including a first side and a second side. The outer ring includes a first opening on the first side configured to receive the first pin and a second opening on the second side configured to receive the second pin. The outer ring includes a first slotted entry opening on the first side extending from a first edge of the outer ring to the first opening, and the outer ring includes a second slotted entry opening on the second side extending from a second edge of the outer ring to the second opening.Type: GrantFiled: May 25, 2018Date of Patent: July 20, 2021Assignee: The Boeing CompanyInventor: Kevin R. Tsai
-
Patent number: 11059563Abstract: A collapsible flap deployment system for an aircraft wing that includes a support beam pivotably connected to a carrier beam, which is connected to a wing flap. A rear spar fitting is connected to a wing rear spar by a first plurality of fasteners and a second plurality of fasteners connects the support beam to the rear spar fitting. A fuse pin connects a link to the rear spar fitting. The fuse pin is configured to shear upon the application of a first predetermined force. An impact load to the bottom of the support beam puts the link into compression applying a force to the fuse pin until the fuse pin shears releasing the link from the rear spar fitting. The impact load rotates the support beam and carrier beam causing the second plurality of fasteners to fail releasing the support beam and carrier beam from the wing rear spar.Type: GrantFiled: September 6, 2018Date of Patent: July 13, 2021Assignee: THE BOEING COMPANYInventors: Bryan Jacob Gruner, Kevin R. Tsai
-
Patent number: 11034432Abstract: A trailing edge flap actuation mechanism has a flap drive link with a first end pivotally coupled to a fore flap structure of a flap and a second end pivotally coupled to an underwing support structure. An aft tension link has a leading end pivotally coupled proximate an aft end of the underwing support structure and a trailing end coupled to a mid-section structure of the flap. An actuator, when actuated, rotates the flap drive link about a first pivot axle to move the flap between a retracted position and a deployed lowered position. The actuator, including a ball-screw drive shaft having a universal joint, is positioned in a cove above the underwing support structure whereby the extent that the underwing support structure protrudes below the wing is reduced.Type: GrantFiled: October 27, 2018Date of Patent: June 15, 2021Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Bruce A. Dahl, Gregory M. Santini, Kyle A. Johnson, Seiya Sakurai, Stephen R. Amorosi
-
Publication number: 20210101671Abstract: A flap support mechanism includes a track rotatably connected to an aft fitting of a wing. A forward roller and an aft roller extend laterally from a flap structure, the forward roller and aft roller constrained in a slot in the track. The slot has a profile configured to induce both translation and rotation in the flap, in concert with rotation of the track about the aft fitting, thereby passively mirroring motion of the flap induced by an actuator driven primary main flap support.Type: ApplicationFiled: October 7, 2019Publication date: April 8, 2021Inventors: Kevin R. Tsai, John Thomas B. Homrich
-
Publication number: 20210086904Abstract: A flap support mounting assembly employs a flap support having at least one laterally-oriented upper coupling and a pair of laterally-oriented lower couplings. A fail-safe pin engages the at least one laterally-oriented upper coupling to an upper rear-spar fitting. A pair of frangible pins engages the lower couplings to a pair of lower rear-spar fittings. The frangible pins are configured to shear and enable the flap support to rotate upwards about the fail-safe pin in response to a load induced on the flap support that creates a moment inducing a sufficient shear force to shear the frangible pins. The fail-safe pin is configured to shear allowing separation of the flap support and associated flap from the wing in a manner that inhibits damage to a rear spar and integral fuel tank in a wing structure.Type: ApplicationFiled: September 25, 2019Publication date: March 25, 2021Inventors: Kevin R. Tsai, Kunal Thakar
-
Publication number: 20210078694Abstract: An actuator mechanism for a flap includes a first link having a rotary-driven end and a free end, and a second link having a forward end, a mid-portion, and an aft end. The rotary-driven end is pivotally connected to a base structure, the forward end is pivotally connected to the free end, and the aft end is connected to the flap. The actuator mechanism also includes a third link that includes a fixed end, an intermediate connector, and an end connector. The fixed end is pivotally connected to the base structure, and the intermediate connector is pivotally connected to the mid-portion of the second link. The actuator mechanism further includes a flap link including a first end pivotally connected to the end connector, and a second end pivotally connected to the flap. Rotation of the first link causes the flap to transition from a stowed to a fully deployed position.Type: ApplicationFiled: September 17, 2019Publication date: March 18, 2021Inventor: Kevin R. Tsai
-
Patent number: 10946949Abstract: An under-wing flap support mounting structure incorporates a clevis on a forward end of an underwing beam. A spherical bearing support assembly carrying a spherical bearing is mounted to a fixed wing structure proximate a lower wing skin. A joint coupling has a lug pivotally coupled to the clevis and a longitudinal pin extending from the lug. The longitudinal pin is slidably received in the spherical bearing. The lug has a bore in which a fuse pin is disposed to secure the lug to the clevis and inhibit the lug from pivoting relative to the clevis. A force applied to an aft portion of the underwing beam that is sufficient to urge separation from the wing causes the clevis to apply a shear force to shear the fuse pin and enable the lug to pivot and cause the longitudinal pin to slide out of the spherical bearing. The underwing flap support separates from the wing without resulting damage to the underside of the wing structure.Type: GrantFiled: October 11, 2018Date of Patent: March 16, 2021Assignee: The Boeing CompanyInventors: Kevin R. Tsai, Mark D. Gerber
-
Publication number: 20210061439Abstract: A flap support fairing system incorporates a fairing attached to a flap and deployed downward with the flap during flap extension. The fairing has an inboard butterfly portion mounted with an inboard hinge and an outboard butterfly portion mounted with in outboard hinge. A fairing deployment mechanism is responsive to flap extension and is configured to rotate the inboard butterfly portion laterally inboard about the inboard hinge relative to an airflow direction and to rotate the outboard butterfly portion laterally outboard about the outboard hinge relative to the airflow direction. Upon flap extension, rotation of the inboard and outboard butterfly portions reduces impingement of a core engine plume on the deployed fairing.Type: ApplicationFiled: August 30, 2019Publication date: March 4, 2021Inventors: Kevin R. Tsai, Gregory M. Santini