Patents by Inventor Kevin Richard John Ellwood

Kevin Richard John Ellwood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11878318
    Abstract: An atomizer for applying a coating includes a nozzle plate, an actuator, and an acoustic focusing device. The nozzle plate defines at least one aperture. The actuator is configured to oscillate to form pressure waves within a fluid to eject the fluid from the nozzle plate. The acoustic focusing device focuses the pressure waves toward the apertures.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: January 23, 2024
    Assignee: Ford Motor Company
    Inventors: Wanjiao Liu, Kevin Richard John Ellwood, Mark Edward Nichols, Christopher Michael Seubert
  • Patent number: 11872580
    Abstract: A method of controlling application of at least one material onto a substrate includes configuring a material applicator having an array plate with an applicator array. The applicator array has a plurality of micro-applicators with a first subset of micro-applicators and a second subset of micro-applicators. Each of the plurality of micro-applicators has a plurality of apertures through which fluid is ejected. The first subset of micro-applicators and the second subset of micro-applicators are individually addressable, and a liquid flows through the first subset of micro-applicators and a shaping gas, e.g., air, flows through the second subset of micro-applicators. The flow of shaping gas shapes the flow of the liquid from the first subset of micro-applicators to the substrate.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: January 16, 2024
    Assignee: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu, Aaron M. Fiala
  • Patent number: 11597273
    Abstract: An automotive axle includes a housing including gears and a bath lubricating the gears, the bath including gear oil and about 0.1 to 5 wt. % secondary alcohol ethoxylate based on total weight of the bath such that during automotive operation at temperatures less than a threshold, reverse micelles form to trap air bubbles in the bath, emulsifying the bath, and at temperatures greater than the threshold, the reverse micelles dissipate.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: March 7, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Hiroko Ohtani, Kevin Richard John Ellwood, David Karl Bidner, Arup Kumar Gangopadhyay, Mathew John Fast, Phillip Bonkoski
  • Patent number: 11541599
    Abstract: A device and method of forming a three-dimensional component includes filling a reservoir (26) with a volume of curable resin (30), the resin configured to undergo a first reaction to form a first product when exposed to light (42) of a first wavelength and to undergo a second reaction to form a second product when exposed to light (62) of a second wavelength. The presence of the first and second products at a common location in the resin causes a third reaction that results in a solid polymer at the common location. The method further includes directing a first light source (34) of the first wavelength into the reservoir, directing a second light source (54) of the second wavelength into the reservoir such that the first and second light sources intersect at a first predetermined location (78) within the reservoir, and allowing the third reaction to form the solid polymer at the first predetermined location.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: January 3, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Mark Nichols, Christopher Seubert, Chelsea Cates, Kevin Richard John Ellwood
  • Publication number: 20220347710
    Abstract: A method of controlling application of at least one material onto a substrate includes configuring a material applicator having an array plate with an applicator array. The applicator array has a plurality of micro-applicators with a first subset of micro-applicators and a second subset of micro-applicators. Each of the plurality of micro-applicators has a plurality of apertures through which fluid is ejected. The first subset of micro-applicators and the second subset of micro-applicators are individually addressable, and a liquid flows through the first subset of micro-applicators and a shaping gas, e.g., air, flows through the second subset of micro-applicators. The flow of shaping gas shapes the flow of the liquid from the first subset of micro-applicators to the substrate.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Applicant: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu, Aaron M. Fiala
  • Publication number: 20220314263
    Abstract: A nozzle for an atomizer includes a plate, a piezoelectric actuator, a body, and a connector. The plate defines an aperture. The actuator is configured to oscillate the plate. The body supports the plate. The connector is configured to reversibly mount the body to the atomizer in a first orientation and in a second orientation. In the first orientation, fluid exits the nozzle along a first axial direction through the aperture. In the second orientation, fluid exits the nozzle along an opposite axial direction through the aperture.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 6, 2022
    Applicant: Ford Motor Company
    Inventors: Wanjiao Liu, Kevin Richard John Ellwood, Mark Edward Nichols, Christopher Michael Seubert
  • Publication number: 20220274127
    Abstract: An atomizer for applying a coating includes a nozzle plate, an actuator, and an acoustic focusing device. The nozzle plate defines at least one aperture. The actuator is configured to oscillate to form pressure waves within a fluid to eject the fluid from the nozzle plate. The acoustic focusing device focuses the pressure waves toward the apertures.
    Type: Application
    Filed: May 19, 2022
    Publication date: September 1, 2022
    Applicant: Ford Motor Company
    Inventors: Wanjiao Liu, Kevin Richard John Ellwood, Mark Edward Nichols, Christopher Michael Seubert
  • Patent number: 11413643
    Abstract: A method of controlling application of at least one material onto a substrate includes configuring a material applicator having an array plate with an applicator array. The applicator array has a plurality of micro-applicators with a first subset of micro-applicators and a second subset of micro-applicators. Each of the plurality of micro-applicators has a plurality of apertures through which fluid is ejected. The first subset of micro-applicators and the second subset of micro-applicators are individually addressable, and a liquid flows through the first subset of micro-applicators and a shaping gas, e.g., air, flows through the second subset of micro-applicators. The flow of shaping gas shapes the flow of the liquid from the first subset of micro-applicators to the substrate.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 16, 2022
    Assignee: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu, Aaron Fiala
  • Patent number: 11400477
    Abstract: A nozzle for an atomizer includes a plate, a piezoelectric actuator, a body, and a connector. The plate defines an aperture. The actuator is configured to oscillate the plate. The body supports the plate. The connector is configured to reversibly mount the body to the atomizer in a first orientation and in a second orientation. In the first orientation, fluid exits the nozzle along a first axial direction through the aperture. In the second orientation, fluid exits the nozzle along an opposite axial direction through the aperture.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: August 2, 2022
    Assignee: Ford Motor Company
    Inventors: Wanjiao Liu, Kevin Richard John Ellwood, Mark Edward Nichols, Christopher Michael Seubert
  • Patent number: 11369946
    Abstract: Methods for desorbing volatile organic compounds (VOCs) from beaded activated carbon (BAC) that is loaded with VOCs, during the VOC abatement process using the fluidized carbon bead system include transferring the loaded BAC in an adsorber to a desorber, where a stream of organic solvent passes over the BAC to dissolve at least a portion of the adsorbed VOCs into the organic solvent to regenerate BAC. The regenerated BAC is returned to the adsorber. The organic solvent containing dissolved VOCs may be transferred to a distiller to separate the organic solvents from the dissolved VOCs and may be reused as the organic solvent in the desorber.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: June 28, 2022
    Assignees: Ford Global Technologies, LLC, The Regents of the University of Michigan
    Inventors: Hiroko Ohtani, Kevin Richard John Ellwood, Maithri Venkat, Adarsh Bhat, Johannes Schwank
  • Patent number: 11364516
    Abstract: An atomizer for applying a coating includes a nozzle plate, an actuator, and an acoustic focusing device. The nozzle plate defines at least one aperture. The actuator is configured to oscillate to form pressure waves within a fluid to eject the fluid from the nozzle plate. The acoustic focusing device focuses the pressure waves toward the apertures.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: June 21, 2022
    Assignee: Ford Motor Company
    Inventors: Wanjiao Liu, Kevin Richard John Ellwood, Mark Edward Nichols, Christopher Michael Seubert
  • Publication number: 20220188540
    Abstract: The method of monitoring an operation includes acquiring data from sensors including images of a workspace in which the operation is to be performed, identifying a human operator and a controlled element within the workspace using the acquired images, determining whether the operation has initiated based on a known activation trigger, estimating pose of the human operator using the images, monitoring state of the controlled element based on acquired data, and determining whether an abnormality occurred based on the estimated pose, the state of the controlled element, a duration of the operation, or a combination thereof.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 16, 2022
    Applicant: Ford Global Technologies, LLC
    Inventors: Raj Sohmshetty, Peter A. Friedman, Kevin Richard John Ellwood, Dimitar Petrov Filev, Shie Mannor, Udy Danino
  • Patent number: 11348355
    Abstract: The method of monitoring an operation includes acquiring data from sensors including images of a workspace in which the operation is to be performed, identifying a human operator and a controlled element within the workspace using the acquired images, determining whether the operation has initiated based on a known activation trigger, estimating pose of the human operator using the images, monitoring state of the controlled element based on acquired data, and determining whether an abnormality occurred based on the estimated pose, the state of the controlled element, a duration of the operation, or a combination thereof.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: May 31, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Raj Sohmshetty, Peter A. Friedman, Kevin Richard John Ellwood, Dimitar Petrov Filev, Shie Mannor, Udy Danino
  • Publication number: 20210162670
    Abstract: A device and method of forming a three-dimensional component includes filling a reservoir (26) with a volume of curable resin (30), the resin configured to undergo a first reaction to form a first product when exposed to light (42) of a first wavelength and to undergo a second reaction to form a second product when exposed to light (62) of a second wavelength. The presence of the first and second products at a common location in the resin causes a third reaction that results in a solid polymer at the common location. The method further includes directing a first light source (34) of the first wavelength into the reservoir, directing a second light source (54) of the second wavelength into the reservoir such that the first and second light sources intersect at a first predetermined location (78) within the reservoir, and allowing the third reaction to form the solid polymer at the first predetermined location.
    Type: Application
    Filed: April 4, 2018
    Publication date: June 3, 2021
    Inventors: Mark NICHOLS, Christopher SEUBERT, Chelsea CATES, Kevin Richard John ELLWOOD
  • Publication number: 20210023581
    Abstract: An ultrasonic atomization material applicator includes a material applicator with at least one transducer and an array plate with an array of micro-applicators. Each of the micro-applicators has a material inlet, a reservoir, and a micro-applicator plate with a plurality of apertures. At least one supply line is in communication with the micro-applicators and configured to supply at least one material to each of the micro-applicators. The at least one ultrasonic transducer is mechanically coupled to the at least one array of micro-applicators and configured to vibrate the at least one array of micro-applicators such that atomized droplets of the at least one material are ejected from each of the micro-applicators. A movement device configured to cyclically move the at least one array of micro-applicators back and forth about at least one axis of the at least one array of micro-applicators can be included.
    Type: Application
    Filed: October 13, 2020
    Publication date: January 28, 2021
    Applicant: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu
  • Publication number: 20210001369
    Abstract: A method of controlling application of at least one material onto a substrate includes configuring a material applicator having an array plate with an applicator array. The applicator array has a plurality of micro-applicators with a first subset of micro-applicators and a second subset of micro-applicators. Each of the plurality of micro-applicators has a plurality of apertures through which fluid is ejected. The first subset of micro-applicators and the second subset of micro-applicators are individually addressable, and a liquid flows through the first subset of micro-applicators and a shaping gas, e.g., air, flows through the second subset of micro-applicators. The flow of shaping gas shapes the flow of the liquid from the first subset of micro-applicators to the substrate.
    Type: Application
    Filed: September 14, 2020
    Publication date: January 7, 2021
    Applicant: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu, Aaron Fiala
  • Patent number: 10864541
    Abstract: An apparatus for applying a coating to a substrate includes a base, an applicator, and a quick-connect connector. The base includes a fluid conduit. The applicator includes at least one actuator and an array of nozzle plates. Each nozzle plate defines at least one aperture. The at least one actuator is configured to oscillate the nozzle plates to eject fluid from the apertures. The quick-connect connector couples the fluid conduit to the applicator for fluid communication therebetween.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 15, 2020
    Assignee: Ford Motor Company
    Inventors: Scott Adams, Kevin Richard John Ellwood, Wanjiao Liu, Christopher Michael Seubert, Mark Edward Nichols
  • Patent number: 10799905
    Abstract: A method of controlling application of material onto a substrate includes ejecting atomized droplets from an array of micro-applicators while the array of micro-applicators cyclically moves about at least one axis. The atomized droplets from each of the plurality of micro-applicators overlap with atomized droplets from adjacent micro-applicators and a diffuse overlap of deposited atomized droplets from adjacent micro-applicators is provided on a surface of the substrate. The array of micro-applicators cyclically rotates back and forth around the at least one axis and/or moves back and forth parallel to the at least one axis. For example, the at least one axis can be a central axis of the array of micro-applicators, a length axis of the array of micro-applicators, a width axis of the array of micro-applicators, and the like. Also, the array of micro-applicators can be part of an ultrasonic material applicator used to paint vehicles.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 13, 2020
    Assignee: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu
  • Patent number: 10792693
    Abstract: A method of controlling application of material onto a substrate is provided. The method includes ejecting an ultraviolet (UV) curable material through a plurality of micro-applicators in the form of atomized droplets. At least one UV light source is positioned adjacent to the plurality of micro-applicators and the atomized droplets are irradiated with UV light by the at least one UV light source and curing of the atomized droplets is initiated. The atomized droplets are deposited onto a surface of the substrate and a UV cured coating on the surface is formed thereon. The UV curable material may include a photolatent base catalyst such that the atomized droplets deposited onto the surface continue to cure after being irradiated with the at least one UV light source. The at least one UV light source can include a UV light ring, a UV light emitting diode, and the like.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 6, 2020
    Assignee: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu
  • Publication number: 20200215905
    Abstract: An automotive axle includes a housing including gears and a bath lubricating the gears, the bath including gear oil and about 0.1 to 5 wt. % secondary alcohol ethoxylate based on total weight of the bath such that during automotive operation at temperatures less than a threshold, reverse micelles form to trap air bubbles in the bath, emulsifying the bath, and at temperatures greater than the threshold, the reverse micelles dissipate.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 9, 2020
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Hiroko OHTANI, Kevin Richard John ELLWOOD, David Karl BIDNER, Arup Kumar GANGOPADHYAY, Mathew John FAST, Phillip BONKOSKI